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Abstract: 

 15 

Extensive uncertainties exist in hydrologic risk analysis. Particularly for interdependent 

hydrometeorological extremes, the random features in individual variables and their dependence 

structures may lead to bias and uncertainty in future risk inferences. In this study, a full-subsampling 

factorial copula (FSFC) approach is proposed to quantify parameter uncertainties and further reveal 

their contributions to predictive uncertainties in risk inferences. Specifically, a full-subsampling 20 

factorial analysis (FSFA) approach is developed to diminish the effect of the sample size and provide 

reliable characterization for parameters’ contributions to the resulting risk inferences. The proposed 

approach is applied to multivariate flood risk inference for Wei River basin to demonstrate the 

applicability of FSFC for tracking the major contributors to resulting uncertainty in a multivariate risk 

analysis framework. In detail, the multivariate risk model associated with flood peak and volume will be 25 

established and further introduced into the proposed full-subsampling factorial analysis framework to 

reveal the individual and interactive effects of parameter uncertainties on the predictive uncertainties in 

the resulting risk inferences. The results suggest that uncertainties in risk inferences would mainly be 

attributed to some parameters of the marginal distributions while the parameter of dependence structure 
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(i.e. copula function) would not produce noticeable effects. Moreover, compared with traditional 30 

factorial analysis (FA), the proposed FSFA approach would produce more reliable visualization for 

parameters’ impacts on risk inferences, while the traditional FA would remarkable overestimate 

contribution of parameters’ interaction to the failure probability in AND, and at the same time, 

underestimate the contribution of parameters’ interaction to the failure probabilities in OR and Kendall. 

 35 

1. Introduction 

 

Many hydrological and climatological extremes are highly correlated among each other, and it is desired 

to explore their interdependence through multivariate approaches. Examples include sea level rise and 

fluvial flood (Moftakhari et al., 2017), drought and heat waves (Sun et al., 2019), soil moisture and 40 

precipitation (AghaKouchak, 2015). Moreover, even one specific hydrological extreme may have 

multiple attributes, such as the peak and volume for a flood, duration and severity for a drought, and 

duration and intensity of a storm (Karmakar and Simonovic, 2009; Kong et al., 2019). Traditional 

univariate approaches, mainly focusing on one variable or one attribute of hydrological extremes (e.g. 

flood peak), may not be sufficient to describe those hydrological extemes containing multivariate 45 

characteristics. Thus the univariate frequency/risk analysis methods may be unable to obtain reliable 

risk inferences for the failure probability or recurrence intervals of interdependent extreme events 

(Chebana and Ouarda, 2011; Requena et al., 2013; Salvadori et al., 2016; Sadegh et al., 2017) 

 

Since the introduction of copula function into hydrology and geosciences by De Michele and Salvador 50 

(2003), the copula-based approaches have been widely used for multivariate hydrologic risk analysis. 

The copula functions are able to model correlated variables with complex or nonlinear dependence 

structures. Also, this kind of methods are easily to be implemented since the marginal distributions and 
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dependence model can be estimated in separate processes, which also give flexibility in selection of 

both marginal and dependence models. A great number of research has been developed for multivariate 55 

hydrologic simulation through copula functions, such as multivariate flood frequency analysis (Sraj et 

al., 2014; Xu et al., 2016; Fan et al., 2018); drought assessments (Song and Singh 2010; Kao and 

Govindaraju 2010; Ma et al. 2013); storm or rainfall dependence analysis (Zhang and Singh 2007; 

Vandenberghe et al. 2010); streamflow simulation (Lee and Salas 2011; Kong et al., 2015) and other 

water and environmental engineering applications (Fan et al., 2017; Huang et al., 2017). 60 

 

For both univariate and multivariate analysis for hydrometeorological risks, uncertainty would be one of 

the unavoidable issues which needs to be well addressed. The uncertainty in hydrometeorological risk 

inference mainly results from stochastic variability of hydrometeorological processes and incomplete 

knowledge of the watershed systems (Merz and Thieken, 2005). Amounts of studies have been proposed 65 

to address uncertainty in both univariate and multivariate hydrological risk analysis (e.g. Merz and 

Thieken, 2005; Serinaldi, 2013; Dung et al., 2015; Zhang et al., 2015; Sadegh et al., 2017; Fan et al., 

2018). However, one critical issue in uncertainty quantification of hydrological inference is how to 

characterize the major sources for uncertain risk inference. Qi et al. (2016) employed a subsampling 

ANOVA approach (Bosshard et al., 2013), to quantify individual and interactive impacts of the 70 

uncertainties in data, probability distribution functions, and probability distribution parameters on the 

total cost for flood control in terms of flood peak flows. Even though the subsampling ANOVA 

approach is able to reduce the effect of the biased estimator on quantification of variance contribution 

resulting from traditional ANOVA approach, it would be noticed that merely subsampling one 

uncertainty parameter/factor (referred as single-subsampling ANOVA), as used in the studies by 75 

Bosshard et al. (2013) and Qi et al. (2016a), will lead to underestimation of individual contribution for 

the factor to be sampled and overestimation of contributions for those non-sampled factors. Moreover, 

few studies have been reported to characterize the individual and interactive effects of parameter 
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uncertainties in marginal and dependence models on the multivariate risk inferences.  

 80 

Consequently, as an extension of previous research, this study aims to propose a Full-subsampling 

factorial copula (FSFC) approach for uncertainty quantification and partition in multivariate hydrologic 

risk inference. In detail, the parameter uncertainties are quantified through a Monte Carlo-based 

Bootstrap algorithm. The interactions of parameter uncertainties are explored through a multilevel 

factorial analysis approach. The contributions of parameter uncertainties are analyzed through a full-85 

subsampling factorial analysis (FSFA) method, in which all uncertain factors will be subsampled to 

generate more reliable results. The applicability of the proposed FSFC approach will demonstrated 

through case studies of flood risk analysis in the Wei River basin in China. 

 

2. Methodology 90 

Figure 1 illustrates the framework of the proposed FSFC approach. The framework consists of four 

modules: (i) selection of marginal distributions, (ii) identification of copulas, (iii) parameter uncertainty 

quantification, (iv) parameter interaction and sensitivity analysis. In FSFC, modules (i) and (ii) are 

proposed to construct the most appropriate copula-based hydrologic risk model. Module (iii) quantifies 

parameter uncertainties in marginal distributions and copulas. Modules (iv) would be the core part of 95 

our study to identify the main sources of uncertainties in multivariate risk inference by the proposed 

full-subsampling factorial analysis (FSFA) approach.  

 

---------------------------------------- 

Place Figure 1 here 100 

---------------------------------------- 
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2.2. Copula-based Multivariate Risk Inference Framework  

 

A copula function is a multivariate distribution function with uniform margins on the interval [0, 1]. 105 

Sklar’s Theorem states that any d-dimensional distribution function F can be formulated through a 

copula and its marginal distributions (Nelsen, 2006). In detail, a multivariate copula function can be 

expressed as: 

1 21 2 1 2 1 1 2 2( , , ..., | , ,..., , ) ( ( | ), ( | ), ..., ( | ) | )
dd d X X X d dF x x x C F x F x F x       =  (1) 

where
1 21 1 2 2( | ), ( | ), ..., ( | )

dX X X d dF x F x F x   are marginal distributions of the random vector (X1, X2, …, 110 

Xd), with γ1, γ2, …, γd respectively being the unknow parameters of marginal distributions. θ is the 

parameter in the copula function describing dependence among the correlated variables. If these 

marginal distributions are continuous, then a single copula function C exists, which can be written as 

(Nelsen, 2006): 

1 2

1 1 1

1 2 1 1 2 2( , , ..., | ) ( ( | ), ( | ), ..., ( | ))
dd X X X d dC u u u F F u F u F u   − − −=  (2)   115 

where 
11 1 1( | )Xu F x =  , 

22 2 2( | )Xu F x =  , …, ( | )
dd X d du F x =  . More details on the theoretical 

background and properties of various copula families can be found in Nelsen (2006).  

 

If appropriate copula functions are specified to reflect the joint probabilistic characteristics among for a 

multivariate extreme event, the conditional, primary and secondary return periods (RP) can be obtained. 120 

Consider one kind of hydrological extreme (denoted as X) with d attributes (i.e. X = (x1, x2, …, xd)), and 

for a specific extreme event X* with its attributes being X* = (x1
*, x2

*, …, xd
*), three categories of 

multivariate RP can be applied for revealing the potential risk of X*. 

 

(i) “OR” case: 125 
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* * *

1 2 1 1 2 2

1 1 1

{( , ,..., ) : ... }

1 ( ( | ), ..., ( | ) | )

OR d

d d d

d d d

T x x x R x x x x x x

C F x F x



  

=       

=
−

 (4) 

where μ denotes the average time between two adjacent events under consideration.  

 

(ii) “AND” case:  

* * *

1 2 1 1 2 2

^

1 2 11 1 2 2

{( , ,..., ) : ... }

( ( | ), ( | ), ..., ( | ) | )

AND d

d d d

d d

T x x x R x x x x x x

C F x F x F x



   

=       

=  (5) 130 

where 
^

C  is the multivariate survival function of the Xi’s proposed by Salvadori et al. (2013; 2016), 

and ( | ) ( ) 1 ( | )i i i i i i iF x P X x F x =  = − . Following Salvadori et al. (2013; 2016), and the Inclusion-

Exclusion principle proposed by Joe (2014), the multivariate survival function 
^

C  can be obtained by: 

^

( ) (1 )C C= −u u  (6) 

and 135 

#( )

1

( ) 1 ( 1) ( : )
d

S

i S i

i S

C u C u i S
= 

= − + −  u   (7) 

 

(iii) “Kendall” case: The Kendall RP characterizes the hydrologic disasters exceeding a critical layer as 

defined by (Salvadori et al., 2011): { : ( ) }F d

tL R F t=  =x x . The Kendall RP can be expressed as 

(Salvadori et al., 2011): 140 

1 ( )

Kendall

C

T
K t


=

−
 (8) 

where KC is the Kendall distribution function associated with C, which can be expressed as: 
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1 1 1( ) ( ( ( | ), ..., ( | ) | ) )C d d dK t P C F x F x t  =    (9) 

 

In addition to the multivariate RP, Failure probability (FP) can be another index to provide more 145 

coherent, general and well devised tools for multivariate risk assessment and communication. In 

general, the failure probability pM to indicate the occurrence of a critical event for at least one time in M 

years of design life can be defined as (Salvadori et al., 2016): 

1

1 (1 ) 1 ( ( ))
M

M

M j d

j

p p F x
=

= − − = −   (10)  

Similar to the multivariate RP concept, the failure probability in a multivariate context can also be 150 

characterized in “OR”, “AND”, and “Kendall” scenarios expressed by the following equations. For a 

given critical threshold 
* * * *

1 2{ , ,..., }dx x x=x , the failure probabilities violating this critical value can be 

expressed as (Salvadori et al., 2016): 

* * *

1 1 1 1 2 21 ( ( ( | ), ( | ),..., ( | ) | ))OR T

T d d dp C F x F x F x   = −  (11a) 

^
* * *

1 2 11 1 2 21 (1 ( ( | ), ( | ), ..., ( | ) | ))AND T

T d dp C F x F x F x   = − −  (11b) 155 

* * *

1 1 1 1 2 21 ( ( ( ( | ), ( | ),..., ( | ) | ) ))Kendall T

T d d dp P C F x F x F x t   = −   (11c) 

where 
OR

Tp , 
AND

Tp , and 
Kendall

Tp respectively denote the failure probability in “AND”, “OR” and 

“Kendall” cases. T indicates the service time of the facilities under consideration.  

 

Focusing on a bivariate case, the joint RP and the associate failure probability in “OR”, “AND”, and 160 

“Kendall” scenarios can be formulated as (Salvadori et al., 2007, 2011; Graler et al., 2013; Sraj et al., 

2014; Serinaldi, 2015): 

1 2

1 2

,

1 21 ( , | )

OR

u u

U U

T
C u u




=

−
 (12a) 
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1 2

1 2

,

1 2 1 21 ( , | )

AND

u u

U U

T
u u C u u




=

− − +
 (12b) 

1 2

1 2

, * *

1 21 ( ( , ) )

Kendall

u u

U U

T
P C u u t


=

− 
 (12c) 165 

1 2

* *

1 21 ( ( , | ))OR T

T U Up C u u = −  (12d) 

1 2

^
* * * *

1 2 1 21 ( ( , | ))AND T
U UTp u u C u u = − + −  (12e) 

1 2

* *

1 21 ( ( ( , | ) ))Kendall T

T U Up P C u u t= −   (12f) 

where 1 1 1 1( | )u F x = , 2 2 2 2( | )u F x = , 
* *

1 1 1 1( | )u F x = ,
* *

2 2 2 2( | )u F x = , (
*

1x ,
*

2x ) defines the bivariate 

threshold.  170 

 

 

2.3. Uncertainty in the Copula-base Risk Model 

 

Extensive uncertainties may be involved in the parametric estimation of a copula function due to: (i) the 175 

inherent uncertainty in the flooding process; (ii) uncertainty in the selection of appropriate marginal 

functions and copulas; and, (iii) statistical uncertainty or parameter uncertainty within the parameter 

estimation process (e.g. the availability of samples) (Zhang et al., 2015). Several methods have been 

proposed to quantify parameter uncertainties in copula-based models. For instance, Dung et al. (2015) 

proposed bootstrap-based methods for quantifying the parameter uncertainties in bivariate copula 180 

models. Zhang et al. (2015) employed a Bayesian inference approach for evaluating uncertainties in 

copula-based hydrologic droughts models, in which the Component wise Hit-And-Run Metropolis 

algorithm is adopted to estimate the posterior probabilities of model parameters.  
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In this study, a bootstrap-based algorithm, will be applied to quantify parameter uncertainties in the 185 

copula-based multivariate risk model. The procedures the bootstrap-based algorithm to derive 

probabilistic distributions of the parameters in both marginal and dependence models are presented as 

follows: 

1. Predefine a large number of bootstrapping samplings NB 

2. Implement the resampling with replacement over observed pairs Z = (X, Y) to obtain Z* = (X*, Y*). 190 

Z* has the same size as Z 

3. Fit the chosen marginal distributions to X* and Y*, and estimate the associated parameters ( ,X Y  ). 

4. Fit the chosen copula to Z*, and estimate the parameter in the copula function θ. 

5. Repeat step 2–5 NB times, and obtain NB sets of ( , , )X Y   . Moreover, the reject those parameters 

that lead to bad fits for both marginal and copula models, the A-D test and the Cramer-von-Mises test 195 

are introduced in the bootstrap procedure to ensure that the obtained parameters can pass statistic tests 

for both the marginal distribution and copula models. Then the kernel method will be adopted to 

quantify the probabilistic features for 
X ,

Y , . 

6. In order to derive bivariate uncertainty bands for a predefined quantile curve (QC) with certain joint 

RP in ‘AND’, ‘OR’ or ‘Kendall’ (denoted as TAND, TOR, TKendall), sample 
1BN sets of ( , , )X Y    from 200 

the obtained NB samples 

7. Sample a large number (Ns) of xi yj from their marginal distributions. 

8. For each set of ( , , )X Y   from 
1BN , evaluate the joint RPs of (xi, yj) (i = 1, 2, …, Ns; y = 1, 2, …, 

Ns), and store the pairs of (xi, yj) approaching the predefined joint RPs. 

9. Repeat step 8 for 
1BN , and for each predefined QC, and plot the bivariate uncertainty bands for each 205 

quantile QC  
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2.4. Interactive and Sensitivity Analysis for Parameter Uncertainties 

 

Due to the uncertainties existing in the unknown parameters for a copula model, the associated risk or 210 

the return period for a flooding event may also be uncertain. Few studies have been reported to analyze 

the effect of uncertainties in the copula model on evaluating the risk for a flood event. To address the 

above issue, a full-subsampling factorial analysis (FSFA) approach will be proposed to reveal the 

individual and interactive effects of parameter uncertainties on the predictive uncertainties of different 

risk inferences.  215 

 

Consider a copula-based bivariate risk assessment model which has two marginal distributions (A and 

B) and one copula (C). The parameters in the two marginal distributions are assumed to be respectively 

denoted as γA with a levels and γB with b levels, while the parameter in the copula is denoted with θC 

with c levels. The three factor ANOVA model for such a factorial design in terms of the predictive risk 220 

(denoted as R) in response to the parameters γA, γB, θC and n replicates, can be expressed as: 

 

0

1,2,...,

1,2,...,

1,2,...

1,2,...,

C A B C A C B A B C A B
i j k i j i k j k i j k

ijkl ijkl

i c

j a
R R R R R R R R R

k b

l n

           


=


=
= + + + + + + + + 

=
 =

 (13) 

where R0 denotes the overall mean effect; , ,C A B
i j k

R R R
  

respectively indicate the effect for parameter θC 

in the copula at the ith level, parameter γA in the first marginal distribution at the jth level, and parameter 225 

γB in the first marginal distribution at the kth level; , ,C A C B A B
i j i k j k

R R R
     

indicate interactions between 

factors θC and γA, θC and γB, as well as γA and γB, respectively; C A B
i j k

R
  

denotes the interaction of factors 

θC , γA and γB; εijkl denotes the random error component.  
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Based on Equation (13), the total variability of the predictive risk can be decomposed into its 230 

component parts as follows (Montgomery, 2001): 

 

C A BT I eSS SS SS SS SS SS
  

= + + + +  (14a) 

and  

2
2 ....

1 1 1 1

c a b n

T ijkl

i j k l

R
SS R

abcn= = = =

= −  (14b) 235 

2
2 ....
...

1

1
C

c

i

i

R
SS R

abn abcn
=

= −  (14c) 

2
2 ....
. ..

1

1
A

a

j

j

R
SS R

bcn abcn
=

= −  (14d) 

2
2 ....
.. .

1

1
B

b

k

k

R
SS R

acn abcn
=

= −  (14e) 

2 2

.

1 1 1 1 1 1 1

1c a b n c a b

e ijkl ijk

i j k l i j k

SS R R
n= = = = = = =

= −   (14f) 

C A C B B A C A B

C A B

I

T e

SS SS SS SS SS

SS SS SS SS SS

        

  

= + + +

= − − − −
  (14g) 240 

 

where
. 1

n

ijk ijkll
R R

=
= , ... 1 1 1

a b n

i ijklj k l
R R

= = =
=   ,

. .. 1 1 1

c b n

j ijkli k l
R R

= = =
=   , .. . 1 1 1

c a n

k ijkli j l
R R

= = =
=  

.... 1 1 1 1

c a b n

ijkli j k l
R R

= = = =
=    . Then the contributions of parameter uncertainties in marginal 

distributions and dependence structures can be calculated as: 

(1) Contribution of parameters in marginal distributions A and B 245 
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/AA TSS SS


 =   (15a) 

/BB TSS SS


 =  (15b) 

(2) Contribution of the parameter in the dependence structure 

/CC TSS SS


 =  (15c) 

(3) Contribution of internal variability  250 

/e e TSS SS =  (15d) 

(4) Contribution of parameter interactions 

1I A B C e    = − − − −  (15e) 

 

However, one major issue for ANOVA approach is that the biased variance estimator in ANOVA would 255 

underestimate the variance in small sample size scenarios (Bosshard et al., 2013). Thus the sample size 

may significantly affect the resulting variance contributions expressed in Equations (15a) – (15e). A 

subsampling approach has been advanced by Bosshard et al. (2013) to diminish the effect of the sample 

size in ANOVA and has been employed for uncertainty partition in flood design and hydrological 

simulation (Qi et al., 2016a, b). In such a subsampling scheme, one factor (denoted as X) with T levels 260 

(these levels can be different values for numerical parameters, or different types for non-numerical 

factor (e.g. model type)), would choose two levels in each iteration. For T possible levels of X, we can 

obtain a total of 2

TC  possible pairs for X, expressed as a 
22 TC  matrix as follows: 

 

1 1 1 2 2 2 2 1

2 3 3 4 1

( , )
T T T

T T T T

X X X X X X X X
g h j

X X X X X X X X

− − −

−

 
=  
 

 (16) 265 

 

However, such a subsampling approach mainly applied to subsample merely one factor or one 

https://doi.org/10.5194/hess-2019-434
Preprint. Discussion started: 11 October 2019
c© Author(s) 2019. CC BY 4.0 License.



13 
 

parameter (here we refer to this method as single-subsampling ANOVA) in previous studies (Bosshard 

et al. 2013; Qi et al., 2016a, b). However, one critical issue for the single-subsampling ANOVA it that it 

will lead to underestimation of individual contribution for the factor to be sampled and overestimation 270 

of contributions for those non-sampled factors. Consequently, in this study, we will propose a FSFA 

approach to subsample all the factors to be addressed, and then quantify the contribution of each factor 

to the response variation. In the FSFA approach, all factors under consideration will be subsampled, and 

the corresponding sum of squares will be obtained. The contribution of one factor would be 

characterized by the mean value of its contribution in each iteration. In detail, for the three factor 275 

ANOVA model expressed by Equation (13), the subsampling schemes for the three parameters can be 

formulated as: 

 

1 1 1 2 2 2 2 1

2 3 3 4 1

( , )C

C C C C C C C C

c c c

C C C C C C C C C C

c c c c

g h j


       

       

− − −

−

 
=  
 

  (17a) 

1 1 1 2 2 2 2 1

2 3 3 4 1

( , )A

A A A A A A A A

a a a

A A A A A A A A A A

a a a a

g h j


       

       

− − −

−

 
=  
 

  (17b) 280 

1 1 1 2 2 2 2 1

2 3 3 4 1

( , )B

B B B B B B B B

b b b

B B B B B B B B B B

b b b b

g h j


       

       

− − −

−

 
=  
 

  (17c) 

Consequently, there are a total number of 2 2 2

c a bC C C   iterations in FSFA for the three-factor model 

expressed as Equation (13). For each iteration, the sums of squares can be reformulated as: 

 

2
2 2 2 ( , ) ( , ) ( , ).

2
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2
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2
2 ( , ) ( , ) ( , ).

2
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where 
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Also, for each iteration, the corresponding contributions for each factor can be obtained as:  

A

j j j

A TSS SS


 =  (19a) 300 

B

j j j

B TSS SS
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Finally, the individual and interactive contributions for those factors can be obtained by averaging the 305 

corresponding contributions in all iterations, expressed as: 

1

1
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J
j j

A T

j

SS SS
J 


=

=   (20a) 
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1
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1

1 J
j

I I

jJ
 

=
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where 2 2 2

c a bJ C C C=   

3. Applications 

 

The proposed FSFC approach can be applied for various multivariate risk inference problems. In this 315 

study, we will apply FSFC for multivariate flood risk inference at the Wei River basin in China. The 

Weihe River plays a key role in the economic development of western China, and thus is known 

regionally as the ‘Mother River’ of the Guanzhong Plain of the southern part of the loess plateau (Song 

et al. 2007; Zuo et al. 2014; Du et al. 2015, Xu et al., 2016). It originates from the Niaoshu Mountain at 

an elevation of 3485 m above mean sea level in Weiyuan County of Gansu Province (Du et al. 2015). 320 

The Weihe River basin is characterized by a semi-arid and sub-humid continental monsoon climate, 

resulting in significant temporal-spatial variations in precipitation, with an annual precipitation of 559 

mm (Xu et al., 2016). Furthermore, there is a strong decreasing gradient from south to north, in which 
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the southern region experiences a sub-humid climate with annual precipitation ranging from 800 to 

1000 mm, whereas the northern region has a semi-arid climate with annual precipitation ranging from 325 

400 to 700 mm (Xu et al., 2016). Over the entire basin, the mean temperature ranges from 6 to 14 0C, 

the annual potential evapotranspiration fluctuates from 660 to 1,600, and the annual actual 

evapotranspiration is about 500 mm (Du et al. 2015). 

 

Observed daily streamflow data at Xianyang and Zhangjiashan gauging stations are applied for 330 

hydrologic risk analysis. Figure 1 show the locations of these three gauging stations. Based on the daily 

stream flow data, the flood peak applied is defined as the maximum daily flow over a period and the 

associated flood volume is considered as the cumulative flow during the flood period. In this study, the 

flood characteristics are obtained based on an annual scale. This means that one flood event is identified 

in each year. The detailed method to identify the flood peak and the associated flood volume can be 335 

found in Yue (2000, 2001). Table 1 shows some descriptive statistical values for the considered 

variables (peak discharge, Q; hydrograph volume, V), in which 47 and 55 flood events are characterized 

at the Xianyang and Zhangjiashan station, respectively. 

 

-------------------------------- 340 

Place Figure 2 and Table 1 here 

-------------------------------- 

 

4. Results Analysis 

4.1. Model Evaluation and Selection  345 

 

There are a number of potential probabilistic models for modelling individual flood variables and their 

dependence structures. In this study, five alternative distributions, including gamma, generalized 

extreme value (GEV), lognormal (LN), Pearson type III (P III), and log-Pearson type III (LP III) 
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distributions, are employed to describe the probabilistic features of the chosen flood variables (i.e. peak 350 

and volume). Moreover, goodness-of-fit tests are performed through the indices of Kolmogorov-

Smirnov test (K-S test), root mean square error (RMSE) and Akaike Information Criterion (AIC), to 

screen the performance of those potential models. The results are presented in Table 2. The results 

indicate that all five parametric distributions can produce satisfactory results, with all p-values larger 

than 0.05. However, it can be concluded that the GEV and lognormal approaches show best 355 

performance for respectively modelling flood peak and volume at both gauging stations.  

 

------------------------------------------- 

Place Tables 2 here 

------------------------------------------- 360 

 

In addition, a total number of six copulas, including Gaussian, Student t, Clayton, Gumbel, Frank and 

Joe copulas, are considered as the candidate models for quantifying the dependence structures for flood 

peak-volume at Xianyang and Zhangjiashan gauging stations. Also, the goodness-of-fit statistics is 

performed based on the Cramér von Mises statistic proposed by Genest et al. (2009). And the indices of 365 

RMSE and AIC would be further employed to evaluate the performance of the obtained copulas and 

identify the most appropriate ones. Table 3 shows statistical test results for the selected copulas. The 

results show that, for the Zhangjiashan station, all candidate copulas except the Joe copula performed 

well, while all six copulas would be able to provide satisfactory risk inferences at the Xianyang station. 

Moreover, based on the values of RMSE and AIC, the Gumbel copula was chosen to model the 370 

dependence of flood peak and volume at Zhangjiashan station, while the Joe copulas performed best at 

the Xianyang station. Consequently, the Gumbel and Joe copula would be chosen in this study to further 

characterize the uncertainty in model parameters and the resulting risks at Zhangjiashan and Xianyang 

station, respectively.  
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 375 

-------------------------------- 

Place Tables 3 here 

-------------------------------- 

 

 380 

4.2. Uncertainty in Model Parameters and Risk Inferences 

 

Based on the results in Tables 2 and 3, the multivariate risk inference model would be established, in 

which the GEV and lognormal distributions would respectively be adopted to model the individual 

flood variables at both gauging stations, while in comparison, the Gumbel and Joe copulas would 385 

respectively be employed for Zhangjiashan and Xianyang stations. Afterward, uncertainties would be 

characterized based on the bootstrap algorithm illustrated in Section 2.3. In current study, a total number 

of 5000 samples would be chosen in order to generally visualize the uncertainty features in model 

parameters. The probabilistic features for obtained parameters values (i.e. shape, scale and location for 

GEV, meanlog, sdlog for LN, and theta for copula) for each sample scenario would be described by the 390 

kernel method. Figure 3 exhibit the probabilistic distributions for the six unknow parameters in the 

established multivariate risk inference model. Extensive uncertainties exist in the parameters for both 

the marginal distribution and dependence model. As presented in Figure 3, each parameter, except the 

meanlog in the LN distribution, exhibit noticeable uncertainty. Moreover, most of the parameter 

uncertainties are approximately normally distributed.  395 

 

-------------------------------- 

Place Figure 3 here 

-------------------------------- 

 400 
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It is quite apparent that different parameter values in the copula model would lead to different risk 

inference results. Consequently, parameter uncertainties in the marginal distributions and copula 

function would definitely result into uncertainties in multivariate risk inferences. Based on the copula 

model, some multivariate risk indices can be easily obtained, such as the joint return period in OR, 

AND and Kendall, as expressed in Equations (12a) – (12c). However, due to parameter uncertainties, 405 

these risk indices may also exhibit some degrees of uncertainty. Figures 4 – 6 describe uncertainties for 

the joint RP in AND, OR and Kendall at the two stations. In general, the predictive RP in AND exhibit 

most significant uncertainty, followed by the predictive RP in OR and Kendall. However, for moderate 

or large flood events, considerable uncertainties can be observed in the inferences for all the three joint 

RPs. Specifically, noticeable uncertainties exist in the predictive joint RP of AND even for a minor 410 

flood event with a 5-year joint RP. For some large flood events with a joint RP around 100 years, the 

predictive RP in AND shows remarkable uncertainty, ranging from less than 50 years to larger than 200 

years. For the joint RP in OR and Kendall, slight uncertainty may exist for small flood events (e.g. 2-

year or 5-year joint RP). Nevertheless, apparently uncertainties can be observed in the predictive joint 

RP even for moderate flood events. As shown in Figure 5, considerable uncertainties may appear in the 415 

predictive joint RP of OR even for a flood with an actual joint RP of 20 years, while prediction of the 

Kendall RP for a 20-year (in Kendall RP) flood event may range from 10 to 50 years, as presented in 

Figure 6.   

 

-------------------------------- 420 

Place Figures 4-6 here 

-------------------------------- 

 

4.3 Individual and Interactive Effects of Parameter Uncertainties 

 425 

It has been observed that parameter uncertainties in the copula-based multivariate risk model would 
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lead to significantly imprecise risk predictions. However, one critical issue to be addressed is that how 

the parameter uncertainties and their interaction would influence the risk inference. Consequently, a 

multilevel factorial analysis, based on Equations (13) and (14) would be proposed to primarily visualize 

the individual and interactive effects of parameter uncertainties in the marginal and dependence models 430 

on the resulting risk inferences. In this study, a total number of 6 parameters (i.e. three from GEV, two 

from LN, and one from copula) would to be addresses, and based on probabilistic features of these 

parameters, three quantile levels (i.e. 0.1, 0.5 and 0.9) would be chosen to characterize the resulting risk 

inferences under different parameter values. This would finally form a 36 factorial design, which has six 

factors with each having three levels. The failure probability denoted as Equations (11) would be 435 

considered as the responses in this factorial design.  

 

The main and interactive effects of parameters uncertainties on the failure probabilities in AND are 

visualized in Figure 7. It is noticeable that at the two gauge stations, parameters uncertainties pose 

similar main and interactive effects on the failure probabilities in AND, which indicates that parameters’ 440 

effects (individual and interactive) on the failure probability in AND are independent with the location 

of gauge stations. More specifically, variations in the shape parameter in GEV and sdlog parameter in 

LN would lead to more changes in the corresponding responses (i.e. failure probability in AND) than 

the variations in other parameters. Also, as shown in Figure 7, the parameter in the copula function (i.e. 

Cop_theta), describing dependence of the two flood variables, would not have an effect on the resulting 445 

risk as visible as the effects from the parameters (except the location parameter in GEV) in the marginal 

distributions. In terms of parameter interactions, the significance of interactive effects for different 

parameters is various. The interactive curves for some parameters (e.g. GEV_shape and GEV_location) 

are nearly parallel at the three levels, indicating an insignificant interaction for these two parameters on 

the inferred risk. In comparison, there are also some interactive curves intersecting among each other 450 

(e.g. GEV_shape and LN_meanlog), implying a significant interaction among these two parameters. 
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Table 4 provides the results from an ANOVA table for the failure probability in AND. It is quite 

interesting that: i) even though the effect from the parameter in the copula function is not as visible as 

the effects from the parameters (except the location parameter in GEV) in the marginal distributions (as 

shown in Figure 7), such an effect is still statistically significant; i) the effect from the location 455 

parameter of GEV is statistically insignificant, which also lead to insignificant interactive effects 

between the location parameter and other parameters; iii) the interactions between the parameter in 

copula and the parameters in marginal distributions would be more likely statistically insignificant; iv) 

the statistical significance (significant or not) for individual and interactive effects from parameters is 

almost the same between these two gauge stations. All these conclusions obtained from Table 4 are 460 

consistent with the implications described in Figure 7.  

 

-------------------------------- 

Place Figures 7 and Table 4 here 

-------------------------------- 465 

 

In terms of the failure probabilities in OR and Kendall, as presented in Figures 8 and 9, these have 

similar pattern with the failure probability in AND (presented in Figure 7). The individual/main effects 

from the marginal distributions (except the location parameter in GEV) are generally more visible than 

the parameter in copula. Also, some interactive curves, especially the curves between GEV_location 470 

and others, are parallel, showing insignificant interaction between those parameters. More detailed 

characterization of the main and interactive effects for the failure probabilities in OR and Kendall is 

described in the ANOVA tables in Tables 5 and 6. These two tables show some slight differences from 

the conclusions given by Table 4. The location parameter in GEV also pose statistically significant 

effect on the results failure probabilities in OR and Kendall, which also leads to some significant 475 

interactions between this parameter and other model parameters. For the failure probability in Kendall, 
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the parameter in copula would have more interactions with other parameters in marginal distributions 

than the interactions in the failure probability in AND and OR. As presented in Table 6, the parameter in 

copula would have statistically significant effect on the inferred failure probability in Kendall with other 

parameters except the location parameter in GEV. These results are also implied in the main effects 480 

plots and full interactions plot matrices in Figures 8 and 9.  

 

-------------------------------------------- 

Place Figures 8-9 and Table 5 - 6 here 

-------------------------------------------- 485 

 

Based on the three-level factorial analysis, it can be generally concluded that the parameters in marginal 

distributions (except the location parameter in GEV) would have more individual effects on joint risk 

inference than the parameter in copula. The risk indices (i.e. AND, OR, or Kendall) would not have 

significantly influence the individual effects of model parameters. However, for the interactive effects 490 

among model parameters, they may exhibit slightly different patterns. Specifically, the parameter in 

copula would have more significant interactions with parameters in marginal distributions on the failure 

risk in Kendall than the other two risk indices. Moreover, the individual and interactive effects from 

model parameters on risk inferences would not influence by the location of gauge stations.  

 495 

4.4. Contribution Partition of Uncertainty Sources 

 

As a result of parameter uncertainties, the predictive failure probabilities exhibit noticeable 

uncertainties, as shown in Figures 4-6. The three-level factorial analysis based on Equations (11) is able 

to provide a primary description and visualization related to the individual and interactive effects of 500 

parameter uncertainty on the inferred failure probabilities. However, two critical issue to be answered 
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are: (i) how much would parameter uncertainties contribute to the variation of the inferred risk values? 

and (ii) do these contributions change significantly for failure probabilities with different service time 

scenarios? To address these two issues and get reliable results, a full-subsampling factorial approach 

(FSFA) has been proposed, which would be formulated as Equations (16) – (20). Also, similar with the 505 

three-level factorial analysis, three quantile levels would be selected at 0.1, 0.5, and 0.9. Based on 

FSFA, each parameter at its three quantile values (0.1, 0.5, 0.9) would be further subsampled into three 

scenarios of two quantile values (i.e. (0.1, 0.5), (0.1, 0.9), and (0.5, 0.9)). For this study, we have a total 

number of 6 parameters with each choose its three quantile values at 0.1, 0.5, and 0.9, which would lead 

to a total number of 729 (i.e. 36) two-level factorial designs.   510 

 

Figure 10 shows the detailed contributions of the model parameters on uncertainty in predictive failure 

probabilities of AND at the two gauge stations. It can be observed that, even though some discrepancies 

exist at Zhangjiashan and Xingshan stations, the detailed contributions for each parameter and their 

interaction show quite similar features between these two stations. In detail, uncertainty in the shape 515 

parameter in GEV has the most significant impact on the failure probability in AND, followed by sdlog 

in LN, parameter interaction, meanlog in LN, and scale parameter in GEV. Moreover, the uncertainty in 

the parameter in copula would not lead to significant variation in the resulting failure probability 

predictions in AND, which would merely make a contribution less than 0.5%. Such conclusions are also 

generally consistent to the ANOVA results presented in Figure 7 and Table 4. Furthermore, as the 520 

increase in service time, the contributions of each parameter and their interactions would not vary 

significantly. Some individual contributions from parameter uncertainties would slightly increase while 

other individual contributions may slightly decrease. However, the effect from parameter interactions 

would generally increase as the increase of service time. In comparison, the enhancement in design 

standard for hydraulic infrastructure would lead to more chance for deceasing in individual effects and, 525 

at the same time, increasing in parameter interactions. For instance, as the flood design standard 
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increases from 200-year to 500-year for a hydraulic facility with 30-year service time near the 

Zhangjishan station, the interactive effect of model parameters would increase from 15.14% to 18.09%.  

 

-------------------------------------------- 530 

Place Figure 10 here 

-------------------------------------------- 

 

In terms of the failure probability in OR, the individual and interactive effects of model parameters on 

predictive risk uncertainties show similar pattern with the parameters’ effects on the failure probability 535 

in AND. As shown in Figure 11, the shape parameter in the GEV distribution and the sdlog in the LN 

distribution are the two major sources for uncertainties in failure probabilities in OR. However, 

compared with the failure probability in AND, parameter interaction has a less effect on the resulting 

uncertainty of risk inference in OR. As shown in Figures 10 and 11, the effect of parameter interaction 

on the risk in AND ranges between 13.96% and 20.05%, while in comparison, the parameters’ 540 

interactive effect on the risk in OR varies within [10.25%, 11.57%]. Apparently, it can also be observed 

that some external factors such as the design standard and service time of hydraulic infrastructures have 

less influence on the parameters’ interaction on risk in OR than the risk in AND. However, the first 

contributor (i.e. shape parameter in GEV) would have a more contribution on the predictive uncertainty 

in the failure probability in OR as the increase in the design standard, while in comparison, this 545 

contributor would have a less contribution on the risk in AND. For instance, as the design return period 

of flood (i.e. design standard) increases from 200 to 500 years and the service time of the hydraulic 

facility is 30 years, the contribution of the shape parameter in GEV would increase from 47.62% to 

50.64% for the failure probability in OR at the Xianyang station, while the parameter’s contribution on 

the failure probability in AND decreases from 49.26% to 45.77%.  550 
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-------------------------------------------- 

Place Figure 11 here 

-------------------------------------------- 

 555 

For the failure probability in Kendall, the contributions of model parameters and their interaction are 

presented in Figure 12. Similar with the failure probabilities in AND and OR, the shape parameter in the 

GEV distribution and the sdlog parameter in the LN distribution are the two major contributors, which 

can account for nearly 70% or more in the predictive uncertainty of the failure probability in Kendall. 

Meanwhile, the scale parameter in GEV, meanlog in LN, and parameters’ interaction also have 560 

noticeable effects on the risk in Kendall, ranging from 4.72% (scale parameter in GEV) to 12.64% 

(mean log in LN). Conversely, the location parameter in GEV and dependence parameter in copula 

merely have quite minor individual effects. However, it is noticeable that, although the dependence 

parameter has a minor effect ([0.78%, 1.03%) on the risk in Kendall, such an effect is much higher than 

the effect on the risk in AND (less than 0.23%) and the risk in OR (less than 0.06%). 565 

 

-------------------------------------------- 

Place Figure 12 here 

-------------------------------------------- 

 570 

Even through the prediction equations for the failure probabilities in AND, OR and Kendall, as 

presented in Equations (12) are different, the impacts of parameter uncertainties show quite similar 

features, in which the shape parameter in GEV and the sdlog in LN are the two major contributors to the 

predictive uncertainties in risk inferences. Nearly 70% and more variability in the uncertainties in risk 

inferences can be accounted by the uncertainties in the shape parameter in GEV and sdlog parameter in 575 

LN. Also some external factors such as flood design and facility service time may have different 
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influence for parameters’ effects on different risk indices, such influence is not significant and would 

not lead to remarkable changes in parameters’ contribution to risk inferences. Parameters’ interaction 

has a more effect on risk inference in AND than the other two risk indices (i.e. OR, Kendall), while the 

contribution from the dependence parameter, even though not noteworthy, has a more effect on the risk 580 

inference in Kendall.   

 

5. Discussion  

5.1. Contribution Partition of Uncertainty Sources through Different Approaches 

 585 

In current study, the individual and interactive contributions of parameter uncertainties are quantified 

through the developed FSFA approach, in which each parameter has three levels (i.e. 0.1, 0.5, 0.9 

quantiles) to be subsampled. In fact, the parameters’ contribution can also be characterized by 

traditional factorial analysis (FA) approach based on Equations (15) as well as the FSFA approach with 

more factor levels (e.g. 4 or 5 levels for each parameter).  590 

 

Figure 13 shows the comparison of parameter contributions to predictive uncertainty for failure 

probabilities in AND at Zhangjiashan station for three and four parameter levels scenarios for the design 

standard of 200-year. The results of Figure 13(b) are obtained through the FSFA approach with each 

parameter having four levels to be its quantiles at 0.1, 0.35, 0.6, 0.85. Also, Table 7 presents the 595 

parameter contributions to predictive uncertainty in failure probabilities obtained by traditional FA 

approach for Zhangjiashan stations with the design standard of 200-year and service time of 30-year.  

-------------------------------------------- 

Place Figure 13 and Table 7 here 

-------------------------------------------- 600 
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It can be observed that for different subsampling scenarios, the resulting contributions may be different. 

However, such a difference would be tolerant since (1) the variations of parameters’ contribution are 

relatively small and mainly happen for the first two contributors, (2) the total contribution of the first 

two contributors does not change remarkably (around 70% in total), (3) the contributions of other 605 

factors especially the parameters’ interaction do not vary significantly, and (4) the rank of the 

contributions from different sources does not change for the two subsampling scenarios. In comparison, 

as presented in Table 7, the contribution partition of parameter uncertainties obtained through traditional 

FA shows totally different patterns for different risk inferences. Specifically, traditional FA approach 

would significantly overestimate parameter interactive effect on risk inference in AND, while at the 610 

same time, underestimate the interactive effect on risk inference in OR and Kendall. Consequently, the 

contribution rank of parameter uncertainties from traditional FA is different from the results obtained 

through the developed FSFA approach.   

 

As shown in Figure 13, the proposed FSFA approach may lead to slightly different results for different 615 

subsampling schemes (four or five levels). However, increase in parameter level would highly increase 

computational demand. For instance, if each parameter has four levels, FSFA approach would lead to a 

total number of 46,656 (i.e. 66) two-level factorial designs. Moreover, the subsampling scheme for 

factors with five levels would lead to a total number of one million (i.e. 610) two-level factorial designs. 

Consequently, the three-level subsampling scheme would generally be recommended and also can 620 

generate acceptable results.  

 

5.2. Correlation among Parameters’ Contributions 

 

The proposed FSFA approach would generally produce a great number of two-level factorial designs. 625 

For one specific factor (e.g. GEV_shape), it would have two levels (lower and upper levels) for all 
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factorial designs. However, the detailed value for the lower or upper level may be different in different 

factorial designs. This may finally lead to different contributions for this factor. Figure 14 presents the 

variations of parameters’ contributions to the prediction of failure probabilities in AND, OR, and 

Kendall. We already concluded that the shape parameter in GEV (i.e. GEV_shape) and the sdlog in LN 630 

(i.e. LN_sdlog) distribution would generally have the most significant contributions to predictive 

uncertainties in risk inferences. However, as shown in Figure 14, the detailed contributions for these 

two parameters would vary remarkably for different level values in different factorial designs. In 

comparison, the contributions from other parameters and their interaction have less fluctuation than the 

individual contributions of GEV_shape and LN_sdlog. For instance, although the meanlog in LN (i.e. 635 

LN_meanlog), with a average contribution more than 10%, may have some chances to pose a 

predominant contribution more than 50%, most of its contribution are positively distributed within [0, 

25%]. Also, even though the parameters’ interaction has a noteworthy average contribution larger than 

10%, all the detailed contributions in different factorial designs are located within [0, 25%].    

 640 

-------------------------------------------- 

Place Figure 14 here 

-------------------------------------------- 

 

It has been observed that the parameters’ contribution may vary significantly due to the differences in 645 

factor values in different factorial designs. One potential issue to be addressed is that how those 

individual and interactive contributions correlate each other. Figure 15 presents the Pearson’s 

correlation among individual and interactive contributions of model parameters to different risk 

inferences (i.e. failure probabilities in AND, OR, and Kendall). It is noticeable that the parameters in the 

LN distribution (i.e. LN_sdlog, LN_meanlog) are generally negatively correlated with the parameters in 650 

the GEV distribution (i.e. GEV_shape, GEV_scale, and GEV_location). Also, for one marginal 

https://doi.org/10.5194/hess-2019-434
Preprint. Discussion started: 11 October 2019
c© Author(s) 2019. CC BY 4.0 License.



29 
 

distribution (LN or GEV), its parameters are positively correlated. This implies that an increase in the 

contribution of one parameter would lead to a contribution increase for parameters within the same 

distribution and at the same time result in a contribution decrease for all parameters in the other 

distribution. Moreover, if statistically significant, the contribution of the dependent parameter (i.e. 655 

parameter in copula) generally has positive correlation with the contributions from other parameters 

except GEV_shape and parameters’ interaction. Also, the contribution from parameters’ interaction are 

generally negatively correlated with the individual contributions from other parameters if such 

correlation is statistically significant.   

 660 

-------------------------------------------- 

Place Figure 15 here 

-------------------------------------------- 

 

The proposed FSFA approach can generally characterize how parameter uncertainties would influence 665 

the predictive uncertainties in risk inferences. A large number of two-level factorial designs would be 

produced due to different subsampling procedures and then generate different partition results for 

parameters’ contributions. However, for different risk inferences (i.e. failure probabilities in AND, OR, 

and Kendall), these partition results have similar variation features and also show similar correlation 

plots.  670 

 

6. Conclusions  

 

Uncertainty quantification is an essential issue for both univariate and multivariate hydrological risk 

analysis. A number of research works have been posed to reveal uncertain features in multivariate 675 

hydrological risk inference. However, it is required to know the major sources/contributors for 
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predictive uncertainties in multivariate risk inferences. In this study, a full-subsampling factorial copula 

approach (FSFC) has been proposed for uncertainty quantification and partition in multivariate 

hydrologic risk inference. In FSFC, a copula-based multivariate risk model has been developed and the 

bootstrap method is adopted to quantify the probabilistic features for the parameters in both marginal 680 

distributions and the dependence model. A full-subsampling factorial analysis (FSFA) approach is 

finally developed to diminish the effect of the sample size in traditional ANOVA and provided reliable 

contribution partition for parameter uncertainties in different risk inferences.  

 

This study is the first attempt to characterize parameter uncertainties in a copula-based multivariate 685 

hydrological risk model and further reveal their contributions to predictive uncertainties for different 

risk inferences. As an improvement of ANOVA, the developed FSFA method can mitigate the effect of 

bias variance estimation in ANOVA and generate reliable results. Moreover, another noteworthy feature 

for the FSFA approach is that it cannot only characterize the impacts for continuous factors (e.g. model 

parameters in this study), but also reveal the impacts of discrete or non-numeric factors. Such a feature 690 

can allow the proposed FSFA approach to be employed to further explore the impacts of non-numeric 

factors (e.g. model structures, sample size) in hydrologic systems analysis.  

 

Code and data availability: The flooding data for the studied catchments as well as the associated 

code for this study can be gathered upon email request to the corresponding authors  695 
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Captions of Tables 

Table 1. Flood characteristics for different stations 805 

Table 2. Statistical test results for marginal distribution estimation: LN means lognormal distribution, P 

III means Pearson Type III distribution, and LP III means log-Pearson Type III distribution. K-S test 

denotes the Kolmogorov–Smirnov test. 

Table 3. Performance for quantifying the joint distributions between flood peak and volume through 

different copulas: CvM is the Cramér von Mises statistic proposed by Genest et al. (2009), with p-value 810 

larger than 0.05 indicating satisfactory performance.Table 4. Statistical test results for marginal 

distribution estimation 

Table 4. ANOVA table for failure probability in AND: A indicates the shape parameter in GEV, B 

indicates the scale parameter of GEV, C indicates the location parameter of GEV, D means the meanlog 

of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula Comparison of RMSE 815 

and AIC values for joint distributions through different copulas  

Table 5. ANOVA table for failure probability in OR: A indicates the shape parameter in GEV, B 

indicates the scale parameter of GEV, C indicates the location parameter of GEV, D means the meanlog 

of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula  

Table 6. ANOVA table for failure probability in Kendall: A indicates the shape parameter in GEV, B 820 

indicates the scale parameter of GEV, C indicates the location parameter of GEV, D means the meanlog 

of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in  

Table 7. Contributions of parameter uncertainties obtained by three level ANOVA to predictive failure 

probabilities for a design return period of 200-year and service time of 30-year 

 825 

Captions of Figures 

Figure 1: Framework of the proposed FSFC approach 

Figure 2. The location of the studied watersheds. Wei River is the largest tributary of Yellow river, with 

a drainage area of 135,000 km2. The historical flood data from Xianyang and Zhangjiashan stations on 

the Wei River are analyzed through the proposed FSFC approach. Figure 3. Probabilistic features for 830 

parameters in marginal distributions and copula: for both Xianyang and Zhangjiashan stations, the GEV 

(parameters include shape, scale and location) function would be employed to quantify the distribution 

of flood peak, while the lognormal distribution (parameters denoted as meanlog and sdlog) is applied 

for flood volume. The Gumbel and Joe copula (parameter denoted as theta) would be respectively 

adopted to model the dependence between flood peak and volume at Zhangjiashan and Xianyang 835 

stations. 

Figure 4. Uncertainty quantification of the joint RP in “AND”: the red dash lines indicate the predictive 

means, the two blue dash lines respectively indicate the 5% and 95% quantiles, and the grey lines 

indicate the predictions under different parameter samples with the same joint RP of the red and blue 
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dash lines; The cyan lines denote the predictions under different return periods with the model 840 

parameters being their mean values. 

Figure 5. Uncertainty quantification of the joint RP in “OR”: the red dash lines indicate the predictive 

means, the two blue dash lines respectively indicate the 5% and 95% quantiles, and the grey lines 

indicate the predictions under different parameter samples with the same joint RP of the red and blue 

dash lines; The cyan lines denote the predictions under different return periods with the model 845 

parameters being their mean values. 

Figure 6. Uncertainty quantification of the joint RP in “Kendall”: the red dash lines indicate the predictive 

means, the two blue dash lines respectively indicate the 5% and 95% quantiles, and the grey lines indicate 

the predictions under different parameter samples with the same joint RP of the red and blue dash lines; 

The cyan lines denote the predictions under different return periods with the model parameters being their 850 

mean values 

Figure 7. Main effects plot and full interactions plot matrix for parameters on the failure probability in 

AND at the two gauge stations 

Figure 8. Main effects plot and full interactions plot matrix for parameters on the failure probability in 

OR at the two gauge stations  855 

Figure 9. Main effects plot and full interactions plot matrix for parameters on the failure probability in 

Kendall at the two gauge stations  

Figure 10. Contributions of parameter uncertainties to predictive failure probabilities in AND under 

different design standards (i.e. return periods (RP)) and different service periods  

Figure 11. Contributions of parameter uncertainties to predictive failure probabilities in OR under 860 

different design standards (i.e. return periods (RP)) and different service periods 

Figure 12. Contributions of parameter uncertainties to predictive failure probabilities in Kendall under 

different design standards (i.e. return periods (RP)) and different service periods 

Figure 13. Comparison of parameter contributions to predictive uncertainty for failure probabilities 

under different levels of subsampling for Zhangjiashan station: three (i.e. 0.1, 0.5, 0.9) and four (i.e. 0.1, 865 

0.35, 0.6, 0.85) level quantiles are adopted for subsampling and the design return period is 200 years.   

Figure 14. Variation of parameters’ contributions for different risk inferences at the Zhangjiashan 

Station for a design standard of 200-year and a service time of 30-year  

Figure 15. Correlation for parameters’ contributions on risk inferences at Zhangjiashan station for a 

design standard of 200-year and a service time of 30-year: The cross sign indicates the correlation is 870 

statistically insignificant 

 

  

https://doi.org/10.5194/hess-2019-434
Preprint. Discussion started: 11 October 2019
c© Author(s) 2019. CC BY 4.0 License.



37 
 

Table 1. Flood characteristics for different stations 

Station name period  flood variable 

   Peak (m3/s) Volume (m3/(s day)) 

  Minimum 139 317 

Xianyang 1960-2006 Median 1350 2491 

  Maximum 12380 17802 

  Minimum 217 303.7 

Zhangjiashan 1958-2012 Median 775 1365.3 

  Maximum 3730 7576.1 

875 
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Table 2. Statistical test results for marginal distribution estimation: LN means lognormal 

distribution, P III means Pearson Type III distribution, and LP III means log-Pearson Type III 

distribution. K-S test denotes the Kolmogorov–Smirnov test. 

Station name Flooding 

variables 

Marginal 

distribution 

K-S test 
RMSE AIC 

T  P-value 

Zhangjiashan 

Peak 

Gamma 0.0745 0.5471 0.0378 -323.5512 

GEV 0.0724 0.9151 0.0275 -389.3956 

LN 0.0805 0.8403 0.0283 -388.3297 

P III 0.0893 0.7386 0.0395 -349.3274 

LP III 0.0795 0.8508 0.0324 -371.3614 

Volume 

Gamma 0.1460 0.1735 0.0596 -306.2925 

GEV 0.1017 0.5839 0.0369 -357.0852 

LN 0.0904 0.7250 0.0361 -361.3353 

P III 0.1589 0.1112 0.0737 -280.8701 

 LP III 0.0967 0.6468 0.0367 -357.5476 

Xianyang 

Peak 

Gamma 0.1159 0.5533 0.0372 -305.4087 

GEV 0.0875 0.8645 0.0305 -321.9202 

LN 0.1051 0.6763 0.0436 -290.5248 

P III 0.1202 0.5051 0.0416 -292.8448 

LP III 0.1321 0.3848 0.0617 -255.8931 

Volume 

Gamma 0.1146 0.5305 0.0450 -287.4880 

GEV 0.0540 0.9980 0.0195 -364.3058 

LN 0.0670 0.9749 0.0192 -367.3885 

P III 0.1005 0.6913 0.0377 -302.0492 

 LP III 0.0722 0.9522 0.0313 -319.6540 
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Table 3. Performance for quantifying the joint distributions between flood peak and volume 

through different copulas: CvM is the Cramér von Mises statistic proposed by Genest et al. 

(2009), with p-value larger than 0.05 indicating satisfactory performance. 

  RMSE AIC CvM p-value 

 Gaussian 0.0669 -295.5144 7.9302 0.7770 

 Student t 0.0669 -293.5237 8.5203 0.5976 

Zhangjiashan Clayton 0.0843 -270.0616 9.4615 0.3290 

 Gumbel 0.0637 -300.8577 7.9342 0.7580 

 Frank 0.0690 -292.0723 9.0704 0.4480 

 Joe 0.0606 -306.3185 11.0321 0.0290 

 Gaussian 0.0513 -277.1704 8.4731 0.2400 

 Student t 0.0510 -275.6834 8.2295 0.2885 

Xinshan Clayton 0.0618 -259.7391 8.2051 0.3240 

 Gumbel 0.0477 -283.9933 7.1344 0.6700 

 Frank 0.0562 -268.6861 8.2725 0.2940 

 Joe 0.0446 -290.2631 6.9905 0.6540 
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Table 4. ANOVA table for failure probability in AND: A indicates the shape parameter in GEV, B indicates the scale parameter of GEV, C 

indicates the location parameter of GEV, D means the meanlog of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula  

 Parameter 
Zhangjiashan Xianyang 

SS DF MS F-Value P-value SS DF MS F-Value P-value 

A 0.37 2 0.18 7512.32 < 0.0001 0.59 2 0.30 5079.77 < 0.0001 

B 0.018 2 8.905E-003 362.65 < 0.0001 0.013 2 6.527E-003 111.71 < 0.0001 

C 8.313E-005 2 4.156E-005 1.69 0.1849 8.642E-005 2 4.321E-005 0.74 0.4777 

D 0.059 2 0.029 1195.61 < 0.0001 0.082 2 0.041 701.54 < 0.0001 

E 0.18 2 0.092 3766.70 < 0.0001 0.31 2 0.16 2656.85 < 0.0001 

F 9.379E-004 2 4.690E-004 19.10 < 0.0001 7.813E-004 2 3.907E-004 6.69 0.0013 

AB 2.874E-003 4 7.186E-004 29.26 < 0.0001 8.730E-003 4 2.183E-003 37.35 < 0.0001 

AC 1.179E-005 4 2.948E-006 0.12 0.9753 5.434E-005 4 1.359E-005 0.23 0.9201 

AD 0.047 4 0.012 473.52 < 0.0001 0.079 4 0.020 338.27 < 0.0001 

AE 0.14 4 0.036 1448.10 < 0.0001 0.28 4 0.070 1193.40 < 0.0001 

AF 4.311E-004 4 1.078E-004 4.39 0.0017 4.687E-004 4 1.172E-004 2.01 0.0921 

BC 2.905E-007 4 7.263E-008 2.958E-003 1.0000 2.235E-008 4 5.588E-009 9.564E-005 1.0000 

BD 2.422E-003 4 6.055E-004 24.66 < 0.0001 2.465E-003 4 6.162E-004 10.55 < 0.0001 

BE 6.956E-003 4 1.739E-003 70.81 < 0.0001 8.669E-003 4 2.167E-003 37.09 < 0.0001 

BF 8.325E-006 4 2.081E-006 0.085 0.9871 2.355E-006 4 5.888E-007 0.010 0.9998 

CD 1.143E-005 4 2.859E-006 0.12 0.9767 1.652E-005 4 4.131E-006 0.071 0.9909 

CE 3.235E-005 4 8.088E-006 0.33 0.8583 5.669E-005 4 1.417E-005 0.24 0.9142 

CF 3.820E-008 4 9.551E-009 3.889E-004 1.0000 1.559E-008 4 3.897E-009 6.670E-005 1.0000 

DE 1.792E-003 4 4.481E-004 18.25 < 0.0001 6.919E-003 4 1.730E-003 29.60 < 0.0001 

DF 9.625E-005 4 2.406E-005 0.98 0.4178 1.288E-004 4 3.221E-005 0.55 0.6982 

EF 3.238E-004 4 8.095E-005 3.30 0.0109 4.540E-004 4 1.135E-004 1.94 0.1017 

Error 0.016 656 2.456E-005   0.038 656 5.843E-005   

Total SS 0.85 728    1.42 728    
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Table 5. ANOVA table for failure probability in OR: A indicates the shape parameter in GEV, B indicates the scale parameter of GEV, C 

indicates the location parameter of GEV, D means the meanlog of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula  

 Parameter 
Zhangjiashan Xianyang 

SS DF MS F-Value P-value SS DF MS F-Value P-value 

A 2.04 2 1.02 39285.40 < 0.0001 3.71 2 1.85 30534.64 < 0.0001 

B 0.20 2 0.098 3784.17 < 0.0001 0.26 2 0.13 2165.79 < 0.0001 

C 9.466E-004 2 4.733E-004 18.22 < 0.0001 1.811E-003 2 9.054E-004 14.91 < 0.0001 

D 0.24 2 0.12 4679.22 < 0.0001 0.30 2 0.15 2498.09 < 0.0001 

E 0.60 2 0.30 11626.79 < 0.0001 0.87 2 0.43 7132.20 < 0.0001 

F 7.833E-004 2 3.916E-004 15.08 < 0.0001 6.382E-004 2 3.191E-004 5.26 0.0054 

AB 0.17 4 0.043 1666.34 < 0.0001 0.27 4 0.069 1128.63 < 0.0001 

AC 8.076E-004 4 2.019E-004 7.77 < 0.0001 1.830E-003 4 4.575E-004 7.54 < 0.0001 

AD 0.048 4 0.012 465.73 < 0.0001 0.081 4 0.020 335.01 < 0.0001 

AE 0.15 4 0.037 1418.17 < 0.0001 0.29 4 0.071 1175.81 < 0.0001 

AF 3.442E-004 4 8.604E-005 3.31 0.0106 3.658E-004 4 9.144E-005 1.51 0.1986 

BC 8.013E-005 4 2.003E-005 0.77 0.5442 1.226E-004 4 3.064E-005 0.50 0.7323 

BD 2.528E-003 4 6.319E-004 24.33 < 0.0001 2.534E-003 4 6.334E-004 10.43 < 0.0001 

BE 7.212E-003 4 1.803E-003 69.40 < 0.0001 8.837E-003 4 2.209E-003 36.39 < 0.0001 

BF 5.294E-006 4 1.323E-006 0.051 0.9951 1.077E-006 4 2.693E-007 4.436E-003 1.0000 

CD 1.192E-005 4 2.981E-006 0.11 0.9773 1.697E-005 4 4.242E-006 0.070 0.9911 

CE 3.353E-005 4 8.382E-006 0.32 0.8628 5.780E-005 4 1.445E-005 0.24 0.9169 

CF 2.416E-008 4 6.040E-009 2.325E-004 1.0000 7.119E-009 4 1.780E-009 2.932E-005 1.0000 

DE 0.11 4 0.028 1069.79 < 0.0001 0.17 4 0.042 691.60 < 0.0001 

DF 7.482E-005 4 1.870E-005 0.72 0.5784 9.919E-005 4 2.480E-005 0.41 0.8026 

EF 2.568E-004 4 6.420E-005 2.47 0.0435 3.550E-004 4 8.876E-005 1.46 0.2121 

Error 0.017 656 2.598E-005   0.040 656 6.071E-005   

Total SS 3.60 728    6.01 728    
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Table 6. ANOVA table for failure probability in Kendall: A indicates the shape parameter in GEV, B indicates the scale parameter of GEV, C 

indicates the location parameter of GEV, D means the meanlog of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula  

 Parameter 
Zhangjiashan Xianyang 

SS DF MS F-Value P-value SS DF MS F-Value P-value 

A 0.97 2 0.48 33813.15 < 0.0001 2.08 2 1.04 27047.85 < 0.0001 

B 0.096 2 0.048 3349.45 < 0.0001 0.15 2 0.076 1983.83 < 0.0001 

C 4.627E-004 2 2.313E-004 16.19 < 0.0001 1.055E-003 2 5.274E-004 13.72 < 0.0001 

D 0.11 2 0.057 3987.58 < 0.0001 0.17 2 0.084 2181.53 < 0.0001 

E 0.28 2 0.14 9809.61 < 0.0001 0.47 2 0.24 6153.63 < 0.0001 

F 0.013 2 6.451E-003 451.42 < 0.0001 0.025 2 0.013 331.58 < 0.0001 

AB 0.087 4 0.022 1525.14 < 0.0001 0.16 4 0.041 1066.18 < 0.0001 

AC 4.090E-004 4 1.022E-004 7.15 < 0.0001 1.101E-003 4 2.754E-004 7.16 < 0.0001 

AD 0.022 4 5.448E-003 381.22 < 0.0001 0.044 4 0.011 286.00 < 0.0001 

AE 0.066 4 0.017 1156.06 < 0.0001 0.15 4 0.038 995.79 < 0.0001 

AF 2.163E-003 4 5.407E-004 37.84 < 0.0001 5.986E-003 4 1.496E-003 38.93 < 0.0001 

BC 4.233E-005 4 1.058E-005 0.74 0.5645 7.800E-005 4 1.950E-005 0.51 0.7304 

BD 1.147E-003 4 2.866E-004 20.06 < 0.0001 1.377E-003 4 3.444E-004 8.96 < 0.0001 

BE 3.254E-003 4 8.135E-004 56.93 < 0.0001 4.755E-003 4 1.189E-003 30.93 < 0.0001 

BF 2.479E-004 4 6.198E-005 4.34 0.0018 4.939E-004 4 1.235E-004 3.21 0.0126 

CD 5.408E-006 4 1.352E-006 0.095 0.9842 9.226E-006 4 2.307E-006 0.060 0.9933 

CE 1.513E-005 4 3.782E-006 0.26 0.9007 3.112E-005 4 7.781E-006 0.20 0.9370 

CF 1.190E-006 4 2.974E-007 0.021 0.9992 3.369E-006 4 8.423E-007 0.022 0.9991 

DE 0.054 4 0.014 950.06 < 0.0001 0.096 4 0.024 623.48 < 0.0001 

DF 1.870E-004 4 4.676E-005 3.27 0.0114 3.437E-004 4 8.592E-005 2.24 0.0638 

EF 4.113E-004 4 1.028E-004 7.20 < 0.0001 9.130E-004 4 2.282E-004 5.94 0.0001 

Error 9.374E-003 656 1.429E-005   0.025 656 3.844E-005   

Total SS 1.72 728    3.40 728    
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Table 7. Contributions of parameter uncertainties obtained by three level ANOVA to 

predictive failure probabilities for a design return period of 200-year and service time 

of 30-year 

Factor FPand FPor  FPkendall 

A 43.53% 56.67% 56.40% 

B 2.12% 5.56% 5.58% 

C 0.01% 0.03% 0.03% 

D 6.94% 6.67% 6.40% 

E 21.18% 16.67% 16.28% 

F 0.11% 0.02% 0.76% 

Interaction 26.12% 4.72% 5.06% 

 

  

https://doi.org/10.5194/hess-2019-434
Preprint. Discussion started: 11 October 2019
c© Author(s) 2019. CC BY 4.0 License.



44 
 

 
Figure 1. Framework of the proposed FSFC approach.  
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Figure 2. The location of the studied watersheds. Wei River is the largest tributary of Yellow river, 

with a drainage area of 135,000 km2. The historical flood data from Xianyang and Zhangjiashan 

stations on the Wei River are analyzed through the proposed FSFC approach.  
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Figure 3. Probabilistic features for parameters in marginal distributions and copula: for both 

Xianyang and Zhangjiashan stations, the GEV (parameters include shape, scale and location) 

function would be employed to quantify the distribution of flood peak, while the lognormal 

distribution (parameters denoted as meanlog and sdlog) is applied for flood volume. The Gumbel 

and Joe copula (parameter denoted as theta) would be respectively adopted to model the 

dependence between flood peak and volume at Zhangjiashan and Xianyang stations.  
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Figure 4. Uncertainty quantification of the joint RP in “AND”: the red dash lines indicate the predictive means, the two blue dash lines respectively indicate the 5% 

and 95% quantiles, and the grey lines indicate the predictions under different parameter samples with the same joint RP of the red and blue dash lines; The cyan lines 

denote the predictions under different return periods with the model parameters being their mean values. 
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Figure 5. Uncertainty quantification of the joint RP in “OR”: the red dash lines indicate the predictive means, the two blue dash lines respectively indicate the 5% and 

95% quantiles, and the grey lines indicate the predictions under different parameter samples with the same joint RP of the red and blue dash lines; The cyan lines 

denote the predictions under different return periods with the model parameters being their mean values.  
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Figure 6. Uncertainty quantification of the joint RP in “Kendall”: the red dash lines indicate the predictive means, the two blue dash lines respectively indicate the 5% 

and 95% quantiles, and the grey lines indicate the predictions under different parameter samples with the same joint RP of the red and blue dash lines; The cyan lines 

denote the predictions under different return periods with the model parameters being their mean values. 
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Figure 7. Main effects plot and full interactions plot matrix for parameters on the failure probability in AND at the two gauge stations.  

Main Effect

Interactive Effect
Main Effect

Interactive Effect

(a
) 

Z
h

a
n

g
jia

s
h

a
n

(b
) 

X
ia

n
ya

n
g

https://doi.org/10.5194/hess-2019-434
Preprint. Discussion started: 11 October 2019
c© Author(s) 2019. CC BY 4.0 License.



51 
 

 
Figure 8. Main effects plot and full interactions plot matrix for parameters on the failure probability in OR at the two gauge stations   
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Figure 9. Main effects plot and full interactions plot matrix for parameters on the failure probability in Kendall at the two gauge stations
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Figure 10. Contributions of parameter uncertainties to predictive failure probabilities in AND 

under different design standards (i.e. return periods (RP)) and different service periods  
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Figure 11. Contributions of parameter uncertainties to predictive failure probabilities in OR under 

different design standards (i.e. return periods (RP)) and different service periods  
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Figure 12. Contributions of parameter uncertainties to predictive failure probabilities in Kendall 

under different design standards (i.e. return periods (RP)) and different service periods  
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Figure 13. Comparison of parameter contributions to predictive uncertainty for failure 

probabilities under different levels of subsampling for Zhangjiashan station: three (i.e. 0.1, 0.5, 

0.9) and four (i.e. 0.1, 0.35, 0.6, 0.85) level quantiles are adopted for subsampling and the design 

return period is 200 years.    
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Figure 14. Variation of parameters’ contributions for different risk inferences at the Zhangjiashan 

Station for a design standard of 200-year and a service time of 30-year 
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Figure 15. Correlation for parameters’ contributions on risk inferences at Zhangjiashan station for a design standard of 200-year and a service time of 30-year: The 

cross sign indicates the correlation is statistically insignificant.  
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