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Abstract:

Extensive uncertainties exist in hydrologic risk analysis. Particularly for interdependent
hydrometeorological extremes, the random features in individual variables and their dependence
structures may lead to bias and uncertainty in future risk inferences. In this study, a full-subsampling
factorial copula (FSFC) approach is proposed to quantify parameter uncertainties and further reveal
their contributions to predictive uncertainties in risk inferences. Specifically, a full-subsampling
factorial analysis (FSFA) approach is developed to diminish the effect of the sample size and provide
reliable characterization for parameters’ contributions to the resulting risk inferences. The proposed
approach is applied to multivariate flood risk inference for Wei River basin to demonstrate the
applicability of FSFC for tracking the major contributors to resulting uncertainty in a multivariate risk
analysis framework. In detail, the multivariate risk model associated with flood peak and volume will be
established and further introduced into the proposed full-subsampling factorial analysis framework to
reveal the individual and interactive effects of parameter uncertainties on the predictive uncertainties in
the resulting risk inferences. The results suggest that uncertainties in risk inferences would mainly be

attributed to some parameters of the marginal distributions while the parameter of dependence structure
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(i.e. copula function) would not produce noticeable effects. Moreover, compared with traditional
factorial analysis (FA), the proposed FSFA approach would produce more reliable visualization for
parameters’ impacts on risk inferences, while the traditional FA would remarkable overestimate
contribution of parameters’ interaction to the failure probability in AND, and at the same time,

underestimate the contribution of parameters’ interaction to the failure probabilities in OR and Kendall.

1. Introduction

Many hydrological and climatological extremes are highly correlated among each other, and it is desired
to explore their interdependence through multivariate approaches. Examples include sea level rise and
fluvial flood (Moftakhari et al., 2017), drought and heat waves (Sun et al., 2019), soil moisture and
precipitation (AghaKouchak, 2015). Moreover, even one specific hydrological extreme may have
multiple attributes, such as the peak and volume for a flood, duration and severity for a drought, and
duration and intensity of a storm (Karmakar and Simonovic, 2009; Kong et al., 2019). Traditional
univariate approaches, mainly focusing on one variable or one attribute of hydrological extremes (e.g.
flood peak), may not be sufficient to describe those hydrological extemes containing multivariate
characteristics. Thus the univariate frequency/risk analysis methods may be unable to obtain reliable
risk inferences for the failure probability or recurrence intervals of interdependent extreme events

(Chebana and Ouarda, 2011; Requena et al., 2013; Salvadori et al., 2016; Sadegh et al., 2017)

Since the introduction of copula function into hydrology and geosciences by De Michele and Salvador
(2003), the copula-based approaches have been widely used for multivariate hydrologic risk analysis.
The copula functions are able to model correlated variables with complex or nonlinear dependence

structures. Also, this kind of methods are easily to be implemented since the marginal distributions and
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dependence model can be estimated in separate processes, which also give flexibility in selection of
both marginal and dependence models. A great number of research has been developed for multivariate
hydrologic simulation through copula functions, such as multivariate flood frequency analysis (Sraj et
al., 2014; Xu et al., 2016; Fan et al., 2018); drought assessments (Song and Singh 2010; Kao and
Govindaraju 2010; Ma et al. 2013); storm or rainfall dependence analysis (Zhang and Singh 2007;
Vandenberghe et al. 2010); streamflow simulation (Lee and Salas 2011; Kong et al., 2015) and other

water and environmental engineering applications (Fan et al., 2017; Huang et al., 2017).

For both univariate and multivariate analysis for hydrometeorological risks, uncertainty would be one of
the unavoidable issues which needs to be well addressed. The uncertainty in hydrometeorological risk
inference mainly results from stochastic variability of hydrometeorological processes and incomplete
knowledge of the watershed systems (Merz and Thieken, 2005). Amounts of studies have been proposed
to address uncertainty in both univariate and multivariate hydrological risk analysis (e.g. Merz and
Thieken, 2005; Serinaldi, 2013; Dung et al., 2015; Zhang et al., 2015; Sadegh et al., 2017; Fan et al.,
2018). However, one critical issue in uncertainty quantification of hydrological inference is how to
characterize the major sources for uncertain risk inference. Qi et al. (2016) employed a subsampling
ANOVA approach (Bosshard et al., 2013), to quantify individual and interactive impacts of the
uncertainties in data, probability distribution functions, and probability distribution parameters on the
total cost for flood control in terms of flood peak flows. Even though the subsampling ANOVA
approach is able to reduce the effect of the biased estimator on quantification of variance contribution
resulting from traditional ANOVA approach, it would be noticed that merely subsampling one
uncertainty parameter/factor (referred as single-subsampling ANOVA), as used in the studies by
Bosshard et al. (2013) and Qi et al. (2016a), will lead to underestimation of individual contribution for
the factor to be sampled and overestimation of contributions for those non-sampled factors. Moreover,

few studies have been reported to characterize the individual and interactive effects of parameter
3
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uncertainties in marginal and dependence models on the multivariate risk inferences.

Consequently, as an extension of previous research, this study aims to propose a Full-subsampling
factorial copula (FSFC) approach for uncertainty quantification and partition in multivariate hydrologic
risk inference. In detail, the parameter uncertainties are quantified through a Monte Carlo-based
Bootstrap algorithm. The interactions of parameter uncertainties are explored through a multilevel
factorial analysis approach. The contributions of parameter uncertainties are analyzed through a full-
subsampling factorial analysis (FSFA) method, in which all uncertain factors will be subsampled to
generate more reliable results. The applicability of the proposed FSFC approach will demonstrated

through case studies of flood risk analysis in the Wei River basin in China.

2. Methodology

Figure 1 illustrates the framework of the proposed FSFC approach. The framework consists of four
modules: (i) selection of marginal distributions, (ii) identification of copulas, (iii) parameter uncertainty
quantification, (iv) parameter interaction and sensitivity analysis. In FSFC, modules (i) and (ii) are
proposed to construct the most appropriate copula-based hydrologic risk model. Module (iii) quantifies
parameter uncertainties in marginal distributions and copulas. Modules (iv) would be the core part of
our study to identify the main sources of uncertainties in multivariate risk inference by the proposed

full-subsampling factorial analysis (FSFA) approach.

Place Figure 1 here
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2.2. Copula-based Multivariate Risk Inference Framework

105 A copula function is a multivariate distribution function with uniform margins on the interval [0, 1].
Sklar’s Theorem states that any d-dimensional distribution function F can be formulated through a
copula and its marginal distributions (Nelsen, 2006). In detail, a multivariate copula function can be

expressed as:
F X X0 X [ 72072004074, 6) =C(FX1(X1 | 7)) sz(xz 1 72)s s de Xgl7a)10) (D)
110 where Fy (X | 7). Fy, (X, 17,), -y Fy, (X4 | 74) are marginal distributions of the random vector (X1, X2, ...,

Xa), with y1, y2, ..., ya respectively being the unknow parameters of marginal distributions. 6 is the
parameter in the copula function describing dependence among the correlated variables. If these

marginal distributions are continuous, then a single copula function C exists, which can be written as

(Nelsen, 2006):
115 C(Uy, Uy, ..., Uy |9):F(Fx_11(u1|71)1 Fx_zl(u2|7/2)’---’ Fx_dl(ud | 74)) (2)
where U =F, (X [7), U =F (%[7), ..., Uy=F (X4]75) . More details on the theoretical

background and properties of various copula families can be found in Nelsen (2006).

If appropriate copula functions are specified to reflect the joint probabilistic characteristics among for a

120  multivariate extreme event, the conditional, primary and secondary return periods (RP) can be obtained.
Consider one kind of hydrological extreme (denoted as X) with d attributes (i.e. X = (x1, x2, ..., xa)), and
for a specific extreme event X~ with its attributes being X" = (x1", x2', ..., xa"), three categories of

multivariate RP can be applied for revealing the potential risk of X".

125 (i) “OR” case:
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TR ={(X, X Xy ) ERTIX > X VX, > X VoV Xy > X3 }
_ )2 4)
1-C(R(% 7). - Fs (X 174)16)

where u denotes the average time between two adjacent events under consideration.

(i1) “AND” case:

T ={(X, Xyreen Xg) €RYIX > X AX, > X A A Xy > X3}

_ p )
C(El(x1 | 71),E2(X2 [72)s oo E1()(d 174)16)

where C is the multivariate survival function of the Xi’s proposed by Salvadori et al. (2013; 2016),

and F; (% |7)=P(X >x)=1-F(x | 7). Following Salvadori et al. (2013; 2016), and the Inclusion-

n

Exclusion principle proposed by Joe (2014), the multivariate survival function C can be obtained by:

C(u)=C(-u) ©6)
and
E(u)ﬂ—iui + ()" Cq(u; i eS) (7

(ii1) “Kendall” case: The Kendall RP characterizes the hydrologic disasters exceeding a critical layer as
defined by (Salvadori et al., 2011): LT ={x € R® : F(X) =t}. The Kendall RP can be expressed as

(Salvadori et al., 2011):

Kendall __ H
C1-Ke () ®

where Kc is the Kendall distribution function associated with C, which can be expressed as:

6
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Ko () =PC(RX | 7). - Fs (X [75)10) <1) )

In addition to the multivariate RP, Failure probability (FP) can be another index to provide more
coherent, general and well devised tools for multivariate risk assessment and communication. In
general, the failure probability pi to indicate the occurrence of a critical event for at least one time in M

years of design life can be defined as (Salvadori et al., 2016):
N M
Pwu :1_1_[(1_ pj)zl_(F(Xd)) (10)
j=1

Similar to the multivariate RP concept, the failure probability in a multivariate context can also be

characterized in “OR”, “AND”, and “Kendall” scenarios expressed by the following equations. For a
given critical threshold X ={XI , X;, ey X;}, the failure probabilities violating this critical value can be

expressed as (Salvadori et al., 2016):

P =1-(C(RO¢ 1 7) ROG 1 7) Fy (X 17 [0)) (11a)
P® —1- = C(Fa(X, | 7). F2( 1 75), o 10 1 7) [O))T (11b)
pr ! =1=(PC(R. (4 | ) ROG 1 72) s Fy(Xg 7)1 0) <) (11c)
where P>, pM® and pr™ respectively denote the failure probability in “AND”, “OR” and

“Kendall” cases. T indicates the service time of the facilities under consideration.

Focusing on a bivariate case, the joint RP and the associate failure probability in “OR”, “AND”, and
“Kendall” scenarios can be formulated as (Salvadori et al., 2007, 2011; Graler et al., 2013; Sraj et al.,

2014; Serinaldi, 2015):

OR _ H
w e 1-Cyy, (U0, | 6)

(12a)
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A _ U (12b)
v 1_u1 —U, +Cu1u2 (U1’u2 |6)

-I-uKindaII — H S (120)
o 1- I:)(Culuz (u;,u,) <t)

pre =1-(Cyy, (U, U, | 6)) (12d)

P =1 (4 +U; ~Cuw, (U, U | ) (12¢)

pr ! =1-(P(Cyy, (U, u; [ O) <))’ (121)

where U = Fl(Xl | 7/1) Uy = Fz(xz |72) ) UI = Fl(X: | 71) ,U; = Fz(X; | 72) > (X;, X;) defines the bivariate

threshold.

2.3. Uncertainty in the Copula-base Risk Model

Extensive uncertainties may be involved in the parametric estimation of a copula function due to: (i) the
inherent uncertainty in the flooding process; (i1) uncertainty in the selection of appropriate marginal
functions and copulas; and, (iii) statistical uncertainty or parameter uncertainty within the parameter
estimation process (e.g. the availability of samples) (Zhang et al., 2015). Several methods have been
proposed to quantify parameter uncertainties in copula-based models. For instance, Dung et al. (2015)
proposed bootstrap-based methods for quantifying the parameter uncertainties in bivariate copula
models. Zhang et al. (2015) employed a Bayesian inference approach for evaluating uncertainties in
copula-based hydrologic droughts models, in which the Component wise Hit-And-Run Metropolis

algorithm is adopted to estimate the posterior probabilities of model parameters.
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In this study, a bootstrap-based algorithm, will be applied to quantify parameter uncertainties in the
copula-based multivariate risk model. The procedures the bootstrap-based algorithm to derive
probabilistic distributions of the parameters in both marginal and dependence models are presented as
follows:

1. Predefine a large number of bootstrapping samplings N

2. Implement the resampling with replacement over observed pairs Z = (X, Y) to obtain Z* = (X*, Y*).

Z* has the same size as Z

3. Fit the chosen marginal distributions to X* and Y*, and estimate the associated parameters ( y,, 7, ).

4. Fit the chosen copula to Z*, and estimate the parameter in the copula function 6.
5. Repeat step 2—5 Np times, and obtain Na sets of (y,, 4 ,0). Moreover, the reject those parameters
that lead to bad fits for both marginal and copula models, the A-D test and the Cramer-von-Mises test

are introduced in the bootstrap procedure to ensure that the obtained parameters can pass statistic tests

for both the marginal distribution and copula models. Then the kernel method will be adopted to
quantify the probabilistic features for y, ,7,,6.

6. In order to derive bivariate uncertainty bands for a predefined quantile curve (QC) with certain joint

RP in ‘AND’, ‘OR’ or ‘Kendall’ (denoted as 7"7, 708, T*"4!) sample Ny sets of (yy,7,6) from

the obtained Np samples

7. Sample a large number (Ns) of xi yj from their marginal distributions.

8. For each set of (y,,7,,0) from NBl , evaluate the joint RPs of (xi,15)) i=1,2, ..., Ng;y=1,2, ...,
Ns), and store the pairs of (xi, yj) approaching the predefined joint RPs.

9. Repeat step 8 for Ny , and for each predefined OC, and plot the bivariate uncertainty bands for each

quantile QC
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2.4. Interactive and Sensitivity Analysis for Parameter Uncertainties

Due to the uncertainties existing in the unknown parameters for a copula model, the associated risk or
the return period for a flooding event may also be uncertain. Few studies have been reported to analyze
the effect of uncertainties in the copula model on evaluating the risk for a flood event. To address the
above issue, a full-subsampling factorial analysis (FSFA) approach will be proposed to reveal the
individual and interactive effects of parameter uncertainties on the predictive uncertainties of different

risk inferences.

Consider a copula-based bivariate risk assessment model which has two marginal distributions (4 and
B) and one copula (C). The parameters in the two marginal distributions are assumed to be respectively
denoted as y! with a levels and y® with b levels, while the parameter in the copula is denoted with 8¢
with ¢ levels. The three factor ANOVA model for such a factorial design in terms of the predictive risk

(denoted as R) in response to the parameters y4, s, Oc and n replicates, can be expressed as:

i=12,...cC
R.=R +R.+R.,+R,+R R R,.+R j=12,...a 13
w =R R R AR o R n # R s #R e * R T8 g9 (1D
1=12,..n

where Ro denotes the overall mean effect; R RyA , RyB respectively indicate the effect for parameter 8¢
i K

‘9iC H
in the copula at the ith level, parameter y in the first marginal distribution at the jth level, and parameter

2 in the first marginal distribution at the kth level; R Y R L RWB indicate interactions between
(] (A3 jrk
factors ¢ and /4, € and y?, as well as y* and 7%, respectively; R »c,,e denotes the interaction of factors
WAVe

0¢ , y* and y5; gju denotes the random error component.

10
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Based on Equation (13), the total variability of the predictive risk can be decomposed into its

component parts as follows (Montgomery, 2001):

SS; = SSgC +SSyA + SSVB +SS, +SS, (14a)
and
c a b n ) RZ
SS. = R:, ——= 14b
T ; j1; = ijkl abcn ( )
1 & R?
8§, =—— > R} ——= 14
 abn4g ' aben (140)
a 2
ss, = - SRe - R (14d)
7 benim 7 aben
_ 14e
y acn kZ;‘ ' abcn (14¢)
c a b n ) 1 c a b )
SSe :zzz Rijkl __ZZZRuk (141)
i1 j=L k=L I=1 | R )
SS, —SSHC A+SS(9C s +SS . . +SS ..,
7 7y o r"y
(14g)
=SS, —SS SSyA —SSyB -SS,

n n n C a n
where Ry =2 Ry Ry 2_12 k4 Rin > R;. Z_lzkl 12 Rija > --k-ZZi:lezlzlleiiH

R = Zic:lzj=12k:1 ::1 Ri - Then the contributions of parameter uncertainties in marginal

distributions and dependence structures can be calculated as:

(1) Contribution of parameters in marginal distributions A and B

11
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My = SSyA /SS; (15a)
N = SSyB /'SS; (15b)
(2) Contribution of the parameter in the dependence structure

Me =SS, /SS; (15¢)
(3) Contribution of internal variability

n, =SS, 1SS, (15d)
(4) Contribution of parameter interactions

m=1-n,—15 -1 -1, (15e)

However, one major issue for ANOVA approach is that the biased variance estimator in ANOVA would
underestimate the variance in small sample size scenarios (Bosshard et al., 2013). Thus the sample size
may significantly affect the resulting variance contributions expressed in Equations (15a) — (15¢). A
subsampling approach has been advanced by Bosshard et al. (2013) to diminish the effect of the sample
size in ANOVA and has been employed for uncertainty partition in flood design and hydrological
simulation (Qi et al., 2016a, b). In such a subsampling scheme, one factor (denoted as X) with T levels
(these levels can be different values for numerical parameters, or different types for non-numerical

factor (e.g. model type)), would choose two levels in each iteration. For 7 possible levels of X, we can

obtain a total of C? possible pairs for X, expressed as a 2><CT2 matrix as follows:

Xl Xl Xz Xz XT—2 XT2 XTlJ (16)

However, such a subsampling approach mainly applied to subsample merely one factor or one
12
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parameter (here we refer to this method as single-subsampling ANOVA) in previous studies (Bosshard
etal. 2013; Qi et al., 2016a, b). However, one critical issue for the single-subsampling ANOVA it that it

270  will lead to underestimation of individual contribution for the factor to be sampled and overestimation
of contributions for those non-sampled factors. Consequently, in this study, we will propose a FSFA
approach to subsample all the factors to be addressed, and then quantify the contribution of each factor
to the response variation. In the FSFA approach, all factors under consideration will be subsampled, and
the corresponding sum of squares will be obtained. The contribution of one factor would be

275  characterized by the mean value of its contribution in each iteration. In detail, for the three factor
ANOVA model expressed by Equation (13), the subsampling schemes for the three parameters can be

formulated as:

g (h J)_ elc glc 910 HZC 02C 0(:C—2 000—2 ecc—l (173)
EEe e o o 6 O
w0 g.h.ig<| T e v Vﬁ_lj (17b)
a\llas Ja) —
’ AL AR S AN AT A A
AT L N AR SR SR 7&} (179)
s\!lgr Jg/) —
’ R (O O AR (PR (S Y

Consequently, there are a total number of CZC’C/ iterations in FSFA for the three-factor model

expressed as Equation (13). For each iteration, the sums of squares can be reformulated as:

2
2 2 2 on R - - :
i 2 _ 9,c (Ovlc)gyA(OvJA)gyB (0, jg)-
285 SST - Z Z Z ngc (hc,ic)9 a(ha,ia)g g (hg, Js)l 8 (183)
he=Lhy=Lhg=1 1=1 7 r n
13 ) ' '
i 2 B 9,c (OYJC)g:/A(OvJA)gyB (0,Jg)-
SSHC - an h;-Rggc (hC'jC)gyA(ovjA)g:/B(ova)- 8n (lgb)

13
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¥ 4nh* o (1c:0)9 a(Na:Ja)G (0.8 8n
2
SSJ —iiRz _Rgc(o lc)g A(O JA)g g (0,]g)-
[ an = 9,c (hC'O)gyA(Ole)gyB (g, j)- 8n
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(18¢)

(18d)

2
Z z zz R Hc(hc ic)g A(hA ia)g B(hB i) Z Z Z gc(hc Jc)g alha, JA)Q g (hg. jg)- (186)

—1ha=1hg=1 I=1 N ho=1h,=1hg=1

200 S8/ =88] -85, ~§8J, -8, - 58/

where

n
9,c (he ij)g:/A(hAvjA)gyB (hg, Jg)- - lel Rggc (thjC)gyA(hA'jA)gyB (hg, jg)!

R

Rggc (hC'jC)gyA (OvjA)gyB (0, Jg)- = ZhA:IZhB:lZ|:l Rggc (hC'jC)gyA (hAYjA)gyB (hg. jg)! *
295 Ry (01039 4 thnin)a s (010). = Dt Doyt 21 Ray (e Jc)g n (1) (P o)

Rggc (O,jc)g/.\ (o'jA)gyB (hg, jg)- - th:thA:lZ|:l Rggc (thjC)gyA (hAYjA)gyB (hg, jg)!

R 9,0 (0.Jc)9 4 (0.]4)9 5 (0.Jp): Z _1ZhA_1ZhB_lz 1=1""9,c (N ic) a(ha.Ja)9 6 (Me. Je)!

(18f)

Also, for each iteration, the corresponding contributions for each factor can be obtained as:

300 77,=58, /S8
75 =SS, /S8{
né =SSk /SS]

=S8/ /SS]

n) =1-nl-ni-ni-n

14

(19a)
(19b)
(19¢)
(19d)

(19¢)
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Finally, the individual and interactive contributions for those factors can be obtained by averaging the

corresponding contributions in all iterations, expressed as:

135 i i

=7 le: ss, /ss! (20a)
15 i i

s :FJZ_;SSWB /88! (20b)
15 i i

e :FJZ_;SSQC /SS! (20¢)
1S e foc]

7. =7 2.58./SS? (20d)

j=1

1$

nm==>n (20e)
J 4

where J=CZ2CC}

3. Applications

The proposed FSFC approach can be applied for various multivariate risk inference problems. In this
study, we will apply FSFC for multivariate flood risk inference at the Wei River basin in China. The
Weihe River plays a key role in the economic development of western China, and thus is known
regionally as the ‘Mother River’ of the Guanzhong Plain of the southern part of the loess plateau (Song
et al. 2007; Zuo et al. 2014; Du et al. 2015, Xu et al., 2016). It originates from the Niaoshu Mountain at
an elevation of 3485 m above mean sea level in Weiyuan County of Gansu Province (Du et al. 2015).
The Weihe River basin is characterized by a semi-arid and sub-humid continental monsoon climate,
resulting in significant temporal-spatial variations in precipitation, with an annual precipitation of 559

mm (Xu et al., 2016). Furthermore, there is a strong decreasing gradient from south to north, in which

15
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the southern region experiences a sub-humid climate with annual precipitation ranging from 800 to
1000 mm, whereas the northern region has a semi-arid climate with annual precipitation ranging from
400 to 700 mm (Xu et al., 2016). Over the entire basin, the mean temperature ranges from 6 to 14 °C,
the annual potential evapotranspiration fluctuates from 660 to 1,600, and the annual actual

evapotranspiration is about 500 mm (Du et al. 2015).

Observed daily streamflow data at Xianyang and Zhangjiashan gauging stations are applied for
hydrologic risk analysis. Figure 1 show the locations of these three gauging stations. Based on the daily
stream flow data, the flood peak applied is defined as the maximum daily flow over a period and the
associated flood volume is considered as the cumulative flow during the flood period. In this study, the
flood characteristics are obtained based on an annual scale. This means that one flood event is identified
in each year. The detailed method to identify the flood peak and the associated flood volume can be
found in Yue (2000, 2001). Table 1 shows some descriptive statistical values for the considered
variables (peak discharge, Q; hydrograph volume, V), in which 47 and 55 flood events are characterized

at the Xianyang and Zhangjiashan station, respectively.

Place Figure 2 and Table 1 here

4. Results Analysis

4.1. Model Evaluation and Selection

There are a number of potential probabilistic models for modelling individual flood variables and their
dependence structures. In this study, five alternative distributions, including gamma, generalized

extreme value (GEV), lognormal (LN), Pearson type III (P III), and log-Pearson type III (LP III)
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distributions, are employed to describe the probabilistic features of the chosen flood variables (i.e. peak
and volume). Moreover, goodness-of-fit tests are performed through the indices of Kolmogorov-
Smirnov test (K-S test), root mean square error (RMSE) and Akaike Information Criterion (AIC), to
screen the performance of those potential models. The results are presented in Table 2. The results
indicate that all five parametric distributions can produce satisfactory results, with all p-values larger
than 0.05. However, it can be concluded that the GEV and lognormal approaches show best

performance for respectively modelling flood peak and volume at both gauging stations.

Place Tables 2 here

In addition, a total number of six copulas, including Gaussian, Student t, Clayton, Gumbel, Frank and
Joe copulas, are considered as the candidate models for quantifying the dependence structures for flood
peak-volume at Xianyang and Zhangjiashan gauging stations. Also, the goodness-of-fit statistics is
performed based on the Cramér von Mises statistic proposed by Genest et al. (2009). And the indices of
RMSE and AIC would be further employed to evaluate the performance of the obtained copulas and
identify the most appropriate ones. Table 3 shows statistical test results for the selected copulas. The
results show that, for the Zhangjiashan station, all candidate copulas except the Joe copula performed
well, while all six copulas would be able to provide satisfactory risk inferences at the Xianyang station.
Moreover, based on the values of RMSE and AIC, the Gumbel copula was chosen to model the
dependence of flood peak and volume at Zhangjiashan station, while the Joe copulas performed best at
the Xianyang station. Consequently, the Gumbel and Joe copula would be chosen in this study to further
characterize the uncertainty in model parameters and the resulting risks at Zhangjiashan and Xianyang

station, respectively.
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Place Tables 3 here

4.2. Uncertainty in Model Parameters and Risk Inferences

Based on the results in Tables 2 and 3, the multivariate risk inference model would be established, in
which the GEV and lognormal distributions would respectively be adopted to model the individual
flood variables at both gauging stations, while in comparison, the Gumbel and Joe copulas would
respectively be employed for Zhangjiashan and Xianyang stations. Afterward, uncertainties would be
characterized based on the bootstrap algorithm illustrated in Section 2.3. In current study, a total number
of 5000 samples would be chosen in order to generally visualize the uncertainty features in model
parameters. The probabilistic features for obtained parameters values (i.e. shape, scale and location for
GEV, meanlog, sdlog for LN, and theta for copula) for each sample scenario would be described by the
kernel method. Figure 3 exhibit the probabilistic distributions for the six unknow parameters in the
established multivariate risk inference model. Extensive uncertainties exist in the parameters for both
the marginal distribution and dependence model. As presented in Figure 3, each parameter, except the
meanlog in the LN distribution, exhibit noticeable uncertainty. Moreover, most of the parameter

uncertainties are approximately normally distributed.

Place Figure 3 here

18



405

410

415

420

425

https://doi.org/10.5194/hess-2019-434 Hydrology and
Preprint. Discussion started: 11 October 2019 Earth System
(© Author(s) 2019. CC BY 4.0 License. Sciences

Discussions
By

It is quite apparent that different parameter values in the copula model would lead to different risk
inference results. Consequently, parameter uncertainties in the marginal distributions and copula
function would definitely result into uncertainties in multivariate risk inferences. Based on the copula
model, some multivariate risk indices can be easily obtained, such as the joint return period in OR,
AND and Kendall, as expressed in Equations (12a) — (12¢). However, due to parameter uncertainties,
these risk indices may also exhibit some degrees of uncertainty. Figures 4 — 6 describe uncertainties for
the joint RP in AND, OR and Kendall at the two stations. In general, the predictive RP in AND exhibit
most significant uncertainty, followed by the predictive RP in OR and Kendall. However, for moderate
or large flood events, considerable uncertainties can be observed in the inferences for all the three joint
RPs. Specifically, noticeable uncertainties exist in the predictive joint RP of AND even for a minor
flood event with a 5-year joint RP. For some large flood events with a joint RP around 100 years, the
predictive RP in AND shows remarkable uncertainty, ranging from less than 50 years to larger than 200
years. For the joint RP in OR and Kendall, slight uncertainty may exist for small flood events (e.g. 2-
year or 5-year joint RP). Nevertheless, apparently uncertainties can be observed in the predictive joint
RP even for moderate flood events. As shown in Figure 5, considerable uncertainties may appear in the
predictive joint RP of OR even for a flood with an actual joint RP of 20 years, while prediction of the
Kendall RP for a 20-year (in Kendall RP) flood event may range from 10 to 50 years, as presented in
Figure 6.

Place Figures 4-6 here

4.3 Individual and Interactive Effects of Parameter Uncertainties

It has been observed that parameter uncertainties in the copula-based multivariate risk model would
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lead to significantly imprecise risk predictions. However, one critical issue to be addressed is that how
the parameter uncertainties and their interaction would influence the risk inference. Consequently, a
multilevel factorial analysis, based on Equations (13) and (14) would be proposed to primarily visualize
the individual and interactive effects of parameter uncertainties in the marginal and dependence models
on the resulting risk inferences. In this study, a total number of 6 parameters (i.e. three from GEV, two
from LN, and one from copula) would to be addresses, and based on probabilistic features of these
parameters, three quantile levels (i.e. 0.1, 0.5 and 0.9) would be chosen to characterize the resulting risk
inferences under different parameter values. This would finally form a 3° factorial design, which has six
factors with each having three levels. The failure probability denoted as Equations (11) would be

considered as the responses in this factorial design.

The main and interactive effects of parameters uncertainties on the failure probabilities in AND are
visualized in Figure 7. It is noticeable that at the two gauge stations, parameters uncertainties pose
similar main and interactive effects on the failure probabilities in AND, which indicates that parameters’
effects (individual and interactive) on the failure probability in AND are independent with the location
of gauge stations. More specifically, variations in the shape parameter in GEV and sdlog parameter in
LN would lead to more changes in the corresponding responses (i.e. failure probability in AND) than
the variations in other parameters. Also, as shown in Figure 7, the parameter in the copula function (i.e.
Cop_theta), describing dependence of the two flood variables, would not have an effect on the resulting
risk as visible as the effects from the parameters (except the location parameter in GEV) in the marginal
distributions. In terms of parameter interactions, the significance of interactive effects for different
parameters is various. The interactive curves for some parameters (e.g. GEV_shape and GEV _location)
are nearly parallel at the three levels, indicating an insignificant interaction for these two parameters on
the inferred risk. In comparison, there are also some interactive curves intersecting among each other

(e.g. GEV_shape and LN _meanlog), implying a significant interaction among these two parameters.
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Table 4 provides the results from an ANOVA table for the failure probability in AND. It is quite
interesting that: 1) even though the effect from the parameter in the copula function is not as visible as
the effects from the parameters (except the location parameter in GEV) in the marginal distributions (as
shown in Figure 7), such an effect is still statistically significant; 1) the effect from the location
parameter of GEV is statistically insignificant, which also lead to insignificant interactive effects
between the location parameter and other parameters; iii) the interactions between the parameter in
copula and the parameters in marginal distributions would be more likely statistically insignificant; iv)
the statistical significance (significant or not) for individual and interactive effects from parameters is
almost the same between these two gauge stations. All these conclusions obtained from Table 4 are

consistent with the implications described in Figure 7.

Place Figures 7 and Table 4 here

In terms of the failure probabilities in OR and Kendall, as presented in Figures 8 and 9, these have
similar pattern with the failure probability in AND (presented in Figure 7). The individual/main effects
from the marginal distributions (except the location parameter in GEV) are generally more visible than
the parameter in copula. Also, some interactive curves, especially the curves between GEV _location
and others, are parallel, showing insignificant interaction between those parameters. More detailed
characterization of the main and interactive effects for the failure probabilities in OR and Kendall is
described in the ANOVA tables in Tables 5 and 6. These two tables show some slight differences from
the conclusions given by Table 4. The location parameter in GEV also pose statistically significant
effect on the results failure probabilities in OR and Kendall, which also leads to some significant

interactions between this parameter and other model parameters. For the failure probability in Kendall,
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the parameter in copula would have more interactions with other parameters in marginal distributions
than the interactions in the failure probability in AND and OR. As presented in Table 6, the parameter in
copula would have statistically significant effect on the inferred failure probability in Kendall with other
parameters except the location parameter in GEV. These results are also implied in the main effects

plots and full interactions plot matrices in Figures 8 and 9.

Place Figures 8-9 and Table 5 - 6 here

Based on the three-level factorial analysis, it can be generally concluded that the parameters in marginal
distributions (except the location parameter in GEV) would have more individual effects on joint risk
inference than the parameter in copula. The risk indices (i.e. AND, OR, or Kendall) would not have
significantly influence the individual effects of model parameters. However, for the interactive effects
among model parameters, they may exhibit slightly different patterns. Specifically, the parameter in
copula would have more significant interactions with parameters in marginal distributions on the failure
risk in Kendall than the other two risk indices. Moreover, the individual and interactive effects from

model parameters on risk inferences would not influence by the location of gauge stations.

4.4. Contribution Partition of Uncertainty Sources

As aresult of parameter uncertainties, the predictive failure probabilities exhibit noticeable
uncertainties, as shown in Figures 4-6. The three-level factorial analysis based on Equations (11) is able
to provide a primary description and visualization related to the individual and interactive effects of

parameter uncertainty on the inferred failure probabilities. However, two critical issue to be answered
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are: (1) how much would parameter uncertainties contribute to the variation of the inferred risk values?
and (i1) do these contributions change significantly for failure probabilities with different service time
scenarios? To address these two issues and get reliable results, a full-subsampling factorial approach
(FSFA) has been proposed, which would be formulated as Equations (16) — (20). Also, similar with the
three-level factorial analysis, three quantile levels would be selected at 0.1, 0.5, and 0.9. Based on
FSFA, each parameter at its three quantile values (0.1, 0.5, 0.9) would be further subsampled into three
scenarios of two quantile values (i.e. (0.1, 0.5), (0.1, 0.9), and (0.5, 0.9)). For this study, we have a total
number of 6 parameters with each choose its three quantile values at 0.1, 0.5, and 0.9, which would lead

to a total number of 729 (i.e. 3°) two-level factorial designs.

Figure 10 shows the detailed contributions of the model parameters on uncertainty in predictive failure
probabilities of AND at the two gauge stations. It can be observed that, even though some discrepancies
exist at Zhangjiashan and Xingshan stations, the detailed contributions for each parameter and their
interaction show quite similar features between these two stations. In detail, uncertainty in the shape
parameter in GEV has the most significant impact on the failure probability in AND, followed by sdlog
in LN, parameter interaction, meanlog in LN, and scale parameter in GEV. Moreover, the uncertainty in
the parameter in copula would not lead to significant variation in the resulting failure probability
predictions in AND, which would merely make a contribution less than 0.5%. Such conclusions are also
generally consistent to the ANOVA results presented in Figure 7 and Table 4. Furthermore, as the
increase in service time, the contributions of each parameter and their interactions would not vary
significantly. Some individual contributions from parameter uncertainties would slightly increase while
other individual contributions may slightly decrease. However, the effect from parameter interactions
would generally increase as the increase of service time. In comparison, the enhancement in design
standard for hydraulic infrastructure would lead to more chance for deceasing in individual effects and,

at the same time, increasing in parameter interactions. For instance, as the flood design standard
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increases from 200-year to 500-year for a hydraulic facility with 30-year service time near the

Zhangjishan station, the interactive effect of model parameters would increase from 15.14% to 18.09%.

Place Figure 10 here

In terms of the failure probability in OR, the individual and interactive effects of model parameters on
predictive risk uncertainties show similar pattern with the parameters’ effects on the failure probability
in AND. As shown in Figure 11, the shape parameter in the GEV distribution and the sdlog in the LN
distribution are the two major sources for uncertainties in failure probabilities in OR. However,
compared with the failure probability in AND, parameter interaction has a less effect on the resulting
uncertainty of risk inference in OR. As shown in Figures 10 and 11, the effect of parameter interaction
on the risk in AND ranges between 13.96% and 20.05%, while in comparison, the parameters’
interactive effect on the risk in OR varies within [10.25%, 11.57%]. Apparently, it can also be observed
that some external factors such as the design standard and service time of hydraulic infrastructures have
less influence on the parameters’ interaction on risk in OR than the risk in AND. However, the first
contributor (i.e. shape parameter in GEV) would have a more contribution on the predictive uncertainty
in the failure probability in OR as the increase in the design standard, while in comparison, this
contributor would have a less contribution on the risk in AND. For instance, as the design return period
of flood (i.e. design standard) increases from 200 to 500 years and the service time of the hydraulic
facility is 30 years, the contribution of the shape parameter in GEV would increase from 47.62% to
50.64% for the failure probability in OR at the Xianyang station, while the parameter’s contribution on

the failure probability in AND decreases from 49.26% to 45.77%.
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Place Figure 11 here

For the failure probability in Kendall, the contributions of model parameters and their interaction are
presented in Figure 12. Similar with the failure probabilities in AND and OR, the shape parameter in the
GEV distribution and the sdlog parameter in the LN distribution are the two major contributors, which
can account for nearly 70% or more in the predictive uncertainty of the failure probability in Kendall.
Meanwhile, the scale parameter in GEV, meanlog in LN, and parameters’ interaction also have
noticeable effects on the risk in Kendall, ranging from 4.72% (scale parameter in GEV) to 12.64%
(mean log in LN). Conversely, the location parameter in GEV and dependence parameter in copula
merely have quite minor individual effects. However, it is noticeable that, although the dependence
parameter has a minor effect ([0.78%, 1.03%) on the risk in Kendall, such an effect is much higher than

the effect on the risk in AND (less than 0.23%) and the risk in OR (less than 0.06%).

Place Figure 12 here

Even through the prediction equations for the failure probabilities in AND, OR and Kendall, as
presented in Equations (12) are different, the impacts of parameter uncertainties show quite similar
features, in which the shape parameter in GEV and the sdlog in LN are the two major contributors to the
predictive uncertainties in risk inferences. Nearly 70% and more variability in the uncertainties in risk
inferences can be accounted by the uncertainties in the shape parameter in GEV and sdlog parameter in

LN. Also some external factors such as flood design and facility service time may have different
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influence for parameters’ effects on different risk indices, such influence is not significant and would
not lead to remarkable changes in parameters’ contribution to risk inferences. Parameters’ interaction
has a more effect on risk inference in AND than the other two risk indices (i.e. OR, Kendall), while the
contribution from the dependence parameter, even though not noteworthy, has a more effect on the risk

inference in Kendall.

5. Discussion

5.1. Contribution Partition of Uncertainty Sources through Different Approaches

In current study, the individual and interactive contributions of parameter uncertainties are quantified
through the developed FSFA approach, in which each parameter has three levels (i.e. 0.1, 0.5, 0.9
quantiles) to be subsampled. In fact, the parameters’ contribution can also be characterized by
traditional factorial analysis (FA) approach based on Equations (15) as well as the FSFA approach with

more factor levels (e.g. 4 or 5 levels for each parameter).

Figure 13 shows the comparison of parameter contributions to predictive uncertainty for failure
probabilities in AND at Zhangjiashan station for three and four parameter levels scenarios for the design
standard of 200-year. The results of Figure 13(b) are obtained through the FSFA approach with each
parameter having four levels to be its quantiles at 0.1, 0.35, 0.6, 0.85. Also, Table 7 presents the
parameter contributions to predictive uncertainty in failure probabilities obtained by traditional FA

approach for Zhangjiashan stations with the design standard of 200-year and service time of 30-year.

Place Figure 13 and Table 7 here
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It can be observed that for different subsampling scenarios, the resulting contributions may be different.
However, such a difference would be tolerant since (1) the variations of parameters’ contribution are
relatively small and mainly happen for the first two contributors, (2) the total contribution of the first
two contributors does not change remarkably (around 70% in total), (3) the contributions of other
factors especially the parameters’ interaction do not vary significantly, and (4) the rank of the
contributions from different sources does not change for the two subsampling scenarios. In comparison,
as presented in Table 7, the contribution partition of parameter uncertainties obtained through traditional
FA shows totally different patterns for different risk inferences. Specifically, traditional FA approach
would significantly overestimate parameter interactive effect on risk inference in AND, while at the
same time, underestimate the interactive effect on risk inference in OR and Kendall. Consequently, the
contribution rank of parameter uncertainties from traditional FA is different from the results obtained

through the developed FSFA approach.

As shown in Figure 13, the proposed FSFA approach may lead to slightly different results for different
subsampling schemes (four or five levels). However, increase in parameter level would highly increase
computational demand. For instance, if each parameter has four levels, FSFA approach would lead to a
total number of 46,656 (i.e. 6°) two-level factorial designs. Moreover, the subsampling scheme for
factors with five levels would lead to a total number of one million (i.e. 6'°) two-level factorial designs.
Consequently, the three-level subsampling scheme would generally be recommended and also can

generate acceptable results.

5.2. Correlation among Parameters’ Contributions

The proposed FSFA approach would generally produce a great number of two-level factorial designs.

For one specific factor (e.g. GEV_shape), it would have two levels (lower and upper levels) for all
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factorial designs. However, the detailed value for the lower or upper level may be different in different
factorial designs. This may finally lead to different contributions for this factor. Figure 14 presents the
variations of parameters’ contributions to the prediction of failure probabilities in AND, OR, and
Kendall. We already concluded that the shape parameter in GEV (i.e. GEV_shape) and the sdlog in LN
(i.e. LN _sdlog) distribution would generally have the most significant contributions to predictive
uncertainties in risk inferences. However, as shown in Figure 14, the detailed contributions for these
two parameters would vary remarkably for different level values in different factorial designs. In
comparison, the contributions from other parameters and their interaction have less fluctuation than the
individual contributions of GEV_shape and LN_sdlog. For instance, although the meanlog in LN (i.e.
LN meanlog), with a average contribution more than 10%, may have some chances to pose a
predominant contribution more than 50%, most of its contribution are positively distributed within [0,
25%]. Also, even though the parameters’ interaction has a noteworthy average contribution larger than

10%, all the detailed contributions in different factorial designs are located within [0, 25%].

Place Figure 14 here

It has been observed that the parameters’ contribution may vary significantly due to the differences in
factor values in different factorial designs. One potential issue to be addressed is that how those
individual and interactive contributions correlate each other. Figure 15 presents the Pearson’s
correlation among individual and interactive contributions of model parameters to different risk
inferences (i.e. failure probabilities in AND, OR, and Kendall). It is noticeable that the parameters in the
LN distribution (i.e. LN_sdlog, LN meanlog) are generally negatively correlated with the parameters in

the GEV distribution (i.e. GEV_shape, GEV scale, and GEV _location). Also, for one marginal
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distribution (LN or GEV), its parameters are positively correlated. This implies that an increase in the
contribution of one parameter would lead to a contribution increase for parameters within the same
distribution and at the same time result in a contribution decrease for all parameters in the other
distribution. Moreover, if statistically significant, the contribution of the dependent parameter (i.e.
parameter in copula) generally has positive correlation with the contributions from other parameters
except GEV_shape and parameters’ interaction. Also, the contribution from parameters’ interaction are
generally negatively correlated with the individual contributions from other parameters if such

correlation is statistically significant.

Place Figure 15 here

The proposed FSFA approach can generally characterize how parameter uncertainties would influence
the predictive uncertainties in risk inferences. A large number of two-level factorial designs would be
produced due to different subsampling procedures and then generate different partition results for
parameters’ contributions. However, for different risk inferences (i.e. failure probabilities in AND, OR,
and Kendall), these partition results have similar variation features and also show similar correlation

plots.

6. Conclusions

Uncertainty quantification is an essential issue for both univariate and multivariate hydrological risk
analysis. A number of research works have been posed to reveal uncertain features in multivariate

hydrological risk inference. However, it is required to know the major sources/contributors for
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predictive uncertainties in multivariate risk inferences. In this study, a full-subsampling factorial copula
approach (FSFC) has been proposed for uncertainty quantification and partition in multivariate
hydrologic risk inference. In FSFC, a copula-based multivariate risk model has been developed and the
bootstrap method is adopted to quantify the probabilistic features for the parameters in both marginal
distributions and the dependence model. A full-subsampling factorial analysis (FSFA) approach is
finally developed to diminish the effect of the sample size in traditional ANOVA and provided reliable

contribution partition for parameter uncertainties in different risk inferences.

This study is the first attempt to characterize parameter uncertainties in a copula-based multivariate
hydrological risk model and further reveal their contributions to predictive uncertainties for different
risk inferences. As an improvement of ANOVA, the developed FSFA method can mitigate the effect of
bias variance estimation in ANOVA and generate reliable results. Moreover, another noteworthy feature
for the FSFA approach is that it cannot only characterize the impacts for continuous factors (e.g. model
parameters in this study), but also reveal the impacts of discrete or non-numeric factors. Such a feature
can allow the proposed FSFA approach to be employed to further explore the impacts of non-numeric

factors (e.g. model structures, sample size) in hydrologic systems analysis.

Code and data availability: The flooding data for the studied catchments as well as the associated

code for this study can be gathered upon email request to the corresponding authors
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Captions of Tables

Table 1. Flood characteristics for different stations

Table 2. Statistical test results for marginal distribution estimation: LN means lognormal distribution, P
IIT means Pearson Type III distribution, and LP III means log-Pearson Type III distribution. K-S test
denotes the Kolmogorov—Smirnov test.

Table 3. Performance for quantifying the joint distributions between flood peak and volume through
different copulas: CvM is the Cramér von Mises statistic proposed by Genest et al. (2009), with p-value
larger than 0.05 indicating satisfactory performance.Table 4. Statistical test results for marginal
distribution estimation

Table 4. ANOVA table for failure probability in AND: A indicates the shape parameter in GEV, B
indicates the scale parameter of GEV, C indicates the location parameter of GEV, D means the meanlog
of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula Comparison of RMSE
and AIC values for joint distributions through different copulas

Table 5. ANOVA table for failure probability in OR: A indicates the shape parameter in GEV, B
indicates the scale parameter of GEV, C indicates the location parameter of GEV, D means the meanlog
of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula

Table 6. ANOVA table for failure probability in Kendall: A indicates the shape parameter in GEV, B
indicates the scale parameter of GEV, C indicates the location parameter of GEV, D means the meanlog
of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in

Table 7. Contributions of parameter uncertainties obtained by three level ANOVA to predictive failure
probabilities for a design return period of 200-year and service time of 30-year

Captions of Figures
Figure 1: Framework of the proposed FSFC approach

Figure 2. The location of the studied watersheds. Wei River is the largest tributary of Yellow river, with
a drainage area of 135,000 km2. The historical flood data from Xianyang and Zhangjiashan stations on
the Wei River are analyzed through the proposed FSFC approach. Figure 3. Probabilistic features for
parameters in marginal distributions and copula: for both Xianyang and Zhangjiashan stations, the GEV
(parameters include shape, scale and location) function would be employed to quantify the distribution
of flood peak, while the lognormal distribution (parameters denoted as meanlog and sdlog) is applied
for flood volume. The Gumbel and Joe copula (parameter denoted as theta) would be respectively
adopted to model the dependence between flood peak and volume at Zhangjiashan and Xianyang
stations.

Figure 4. Uncertainty quantification of the joint RP in “AND”: the red dash lines indicate the predictive
means, the two blue dash lines respectively indicate the 5% and 95% quantiles, and the grey lines
indicate the predictions under different parameter samples with the same joint RP of the red and blue
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dash lines; The cyan lines denote the predictions under different return periods with the model
parameters being their mean values.

Figure 5. Uncertainty quantification of the joint RP in “OR”: the red dash lines indicate the predictive
means, the two blue dash lines respectively indicate the 5% and 95% quantiles, and the grey lines
indicate the predictions under different parameter samples with the same joint RP of the red and blue
dash lines; The cyan lines denote the predictions under different return periods with the model
parameters being their mean values.

Figure 6. Uncertainty quantification of the joint RP in “Kendall”: the red dash lines indicate the predictive
means, the two blue dash lines respectively indicate the 5% and 95% quantiles, and the grey lines indicate
the predictions under different parameter samples with the same joint RP of the red and blue dash lines;
The cyan lines denote the predictions under different return periods with the model parameters being their
mean values

Figure 7. Main effects plot and full interactions plot matrix for parameters on the failure probability in
AND at the two gauge stations

Figure 8. Main effects plot and full interactions plot matrix for parameters on the failure probability in
OR at the two gauge stations

Figure 9. Main effects plot and full interactions plot matrix for parameters on the failure probability in
Kendall at the two gauge stations

Figure 10. Contributions of parameter uncertainties to predictive failure probabilities in AND under
different design standards (i.e. return periods (RP)) and different service periods

Figure 11. Contributions of parameter uncertainties to predictive failure probabilities in OR under
different design standards (i.e. return periods (RP)) and different service periods

Figure 12. Contributions of parameter uncertainties to predictive failure probabilities in Kendall under
different design standards (i.e. return periods (RP)) and different service periods

Figure 13. Comparison of parameter contributions to predictive uncertainty for failure probabilities
under different levels of subsampling for Zhangjiashan station: three (i.e. 0.1, 0.5, 0.9) and four (i.e. 0.1,
0.35, 0.6, 0.85) level quantiles are adopted for subsampling and the design return period is 200 years.
Figure 14. Variation of parameters’ contributions for different risk inferences at the Zhangjiashan
Station for a design standard of 200-year and a service time of 30-year

Figure 15. Correlation for parameters’ contributions on risk inferences at Zhangjiashan station for a
design standard of 200-year and a service time of 30-year: The cross sign indicates the correlation is
statistically insignificant
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Station name period

flood variable
Peak (m°/s) Volume (m®/(s day))

Minimum
Xianyang 1960-2006 Median
Maximum
Minimum
Zhangjiashan 1958-2012 Median
Maximum

139 317
1350 2491
12380 17802
217 303.7
775 1365.3
3730 7576.1
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Table 2. Statistical test results for marginal distribution estimation: LN means lognormal
distribution, P III means Pearson Type III distribution, and LP III means log-Pearson Type III
distribution. K-S test denotes the Kolmogorov—Smirnov test.

Station name Flooding Marginal K-S test
RMSE AIC
variables distribution T P-value

Gamma 0.0745 05471 0378  -323.5512

GEV 0.0724  0.9151  0.0275  -389.3956

Peak LN 0.0805  0.8403  0.0283  -388.3297

PIII 0.0893  0.7386  0.0395  -349.3274

Zhangjiashan LP III 0.0795 0.8508  0.0324  -371.3614
Gamma 0.1460  0.1735  0.0596  -306.2925
Volume GEV 0.1017  0.5839  0.0369  -357.0852
LN 0.0904  0.7250  0.0361 -361.3353
P 0.1589  0.1112  0.0737  -280.8701
LP IIT 0.0967  0.6468  0.0367 -357.5476
Gamma 0.1159 05533  0.0372  -305.4087
GEV 0.0875  0.8645  0.0305 -321.9202
Peak LN 0.1051  0.6763  0.0436  -290.5248
PIII 0.1202  0.5051  0.0416  -292.8448
. LP1II 0.1321  0.3848  0.0617  -255.8931

Xianyang

Gamma 0.1146  0.5305  0.0450  -287.4880
Volume GEV 0.0540  0.9980  0.0195  -364.3058
LN 0.0670  0.9749  0.0192  -367.3885
PIII 0.1005  0.6913  0.0377  -302.0492

LPIII 0.0722  0.9522  0.0313  -319.6540
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Table 3. Performance for quantifying the joint distributions between flood peak and volume
through different copulas: CvM is the Cramér von Mises statistic proposed by Genest et al.
(2009), with p-value larger than 0.05 indicating satisfactory performance.
RMSE AIC CvM p-value
Gaussian  0.0669  -295.5144  7.9302 0.7770
Studentt  0.0669 -293.5237  8.5203 0.5976
Zhangjiashan Clayton 0.0843 -270.0616  9.4615 0.3290
Gumbel  0.0637 -300.8577 7.9342 0.7580
Frank 0.0690 -292.0723  9.0704 0.4480
Joe 0.0606 -306.3185 11.0321  0.0290
Gaussian ~ 0.0513  -277.1704  8.4731 0.2400
Studentt  0.0510 -275.6834  8.2295 0.2885
Xinshan Clayton 0.0618 -259.7391  8.2051 0.3240
Gumbel 0.0477 -283.9933  7.1344 0.6700
Frank 0.0562 -268.6861  8.2725 0.2940
Joe 0.0446 -290.2631  6.9905 0.6540
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Table 4. ANOVA table for failure probability in AND: A indicates the shape parameter in GEV, B indicates the scale parameter of GEV, C
indicates the location parameter of GEV, D means the meanlog of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula

Parameter Zhangjiashan Xianyang

SS DF MS F-Value P-value SS DF MS F-Value P-value
A 0.37 2 0.18 7512.32 <0.0001 |0.59 2 0.30 5079.77 <0.0001
B 0.018 2 8.905E-003 362.65 <0.0001 |0.013 2 6.527E-003 111.71 <0.0001
C 8.313E-005 2 4.156E-005 1.69 0.1849 8.642E-005 2 4.321E-005 0.74 0.4777
D 0.059 2 0.029 1195.61 <0.0001 |0.082 2 0.041 701.54 <0.0001
E 0.18 2 0.092 3766.70 <0.0001 0.31 2 0.16 2656.85 <0.0001
F 9.379E-004 2 4.690E-004 19.10 <0.0001 |7.813E-004 2 3.907E-004 6.69 0.0013
AB 2.874E-003 4 7.186E-004  29.26 <0.0001 |[8.730E-003 4 2.183E-003 37.35 <0.0001
AC 1.179E-005 4 2.948E-006  0.12 0.9753 5.434E-005 4 1.359E-005 0.23 0.9201
AD 0.047 4 0.012 473.52 <0.0001 {0.079 4 0.020 338.27 <0.0001
AE 0.14 4 0.036 1448.10 <0.0001 0.28 4 0.070 1193.40 <0.0001
AF 4.311E-004 4 1.078E-004 4.39 0.0017 4.687E-004 4 1.172E-004 2.01 0.0921
BC 2.905E-007 4 7.263E-008  2.958E-003 1.0000 2.235E-008 4 5.588E-009 9.564E-005 1.0000
BD 2.422E-003 4 6.055E-004  24.66 <0.0001 |2.465E-003 4 6.162E-004 10.55 <0.0001
BE 6.956E-003 4 1.739E-003  70.81 <0.0001 |[8.669E-003 4 2.167E-003 37.09 <0.0001
BF 8.325E-006 4 2.081E-006 0.085 0.9871 2.355E-006 4 5.888E-007 0.010 0.9998
CD 1.143E-005 4 2.859E-006 0.12 0.9767 1.652E-005 4 4.131E-006 0.071 0.9909
CE 3.235E-005 4 8.088E-006 0.33 0.8583 5.669E-005 4 1.417E-005 0.24 0.9142
CF 3.820E-008 4 9.551E-009  3.889E-004 1.0000 1.559E-008 4 3.897E-009 6.670E-005 1.0000
DE 1.792E-003 4 4.481E-004 18.25 <0.0001 |6.919E-003 4 1.730E-003 29.60 <0.0001
DF 9.625E-005 4 2.406E-005 0.98 0.4178 1.288E-004 4 3.221E-005 0.55 0.6982
EF 3.238E-004 4 8.095E-005  3.30 0.0109 4.540E-004 4 1.135E-004 1.94 0.1017
Error 0.016 656  2.456E-005 0.038 656 5.843E-005
Total SS 0.85 728 1.42 728
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Table 5. ANOVA table for failure probability in OR: A indicates the shape parameter in GEV, B indicates the scale parameter of GEV, C
indicates the location parameter of GEV, D means the meanlog of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula

Parameter Zhangjiashan Xianyang

SS DF MS F-Value P-value SS DF MS F-Value P-value
A 2.04 2 1.02 39285.40 <0.0001 (3.71 2 1.85 30534.64 <0.0001
B 0.20 2 0.098 3784.17 <0.0001 |0.26 2 0.13 2165.79 <0.0001
C 9.466E-004 2 4.733E-004 18.22 <0.0001 [1.811E-003 2 9.054E-004 14.91 <0.0001
D 0.24 2 0.12 4679.22 <0.0001 |0.30 2 0.15 2498.09 <0.0001
E 0.60 2 0.30 11626.79 <0.0001 |0.87 2 0.43 7132.20 <0.0001
F 7.833E-004 2 3.916E-004 15.08 <0.0001 |6.382E-004 2 3.191E-004 5.26 0.0054
AB 0.17 4 0.043 1666.34 <0.0001 0.27 4 0.069 1128.63 <0.0001
AC 8.076E-004 4 2.019E-004 7.77 <0.0001 |1.830E-003 4 4.575E-004 7.54 <0.0001
AD 0.048 4 0.012 465.73 <0.0001 0.081 4 0.020 335.01 <0.0001
AE 0.15 4 0.037 1418.17 <0.0001 {0.29 4 0.071 1175.81 <0.0001
AF 3.442E-004 4 8.604E-005 3.31 0.0106 3.658E-004 4 9.144E-005 1.51 0.1986
BC 8.013E-005 4 2.003E-005 0.77 0.5442 1.226E-004 4 3.064E-005 0.50 0.7323
BD 2.528E-003 4 6.319E-004 24.33 <0.0001 |2.534E-003 4 6.334E-004 10.43 <0.0001
BE 7.212E-003 4 1.803E-003  69.40 <0.0001 |8.837E-003 4 2.209E-003 36.39 <0.0001
BF 5.294E-006 4 1.323E-006  0.051 0.9951 1.077E-006 4 2.693E-007 4.436E-003 1.0000
CD 1.192E-005 4 2.981E-006 0.11 0.9773 1.697E-005 4 4.242E-006 0.070 0.9911
CE 3.353E-005 4 8.382E-006  0.32 0.8628 5.780E-005 4 1.445E-005 0.24 0.9169
CF 2.416E-008 4 6.040E-009  2.325E-004 1.0000 7.119E-009 4 1.780E-009 2.932E-005 1.0000
DE 0.11 4 0.028 1069.79 <0.0001 |0.17 4 0.042 691.60 <0.0001
DF 7.482E-005 4 1.870E-005 0.72 0.5784 9.919E-005 4 2.480E-005 0.41 0.8026
EF 2.568E-004 4 6.420E-005  2.47 0.0435 3.550E-004 4 8.876E-005 1.46 0.2121
Error 0.017 656 2.598E-005 0.040 656 6.071E-005
Total SS 3.60 728 6.01 728
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Table 6. ANOVA table for failure probability in Kendall: A indicates the shape parameter in GEV, B indicates the scale parameter of GEV, C
indicates the location parameter of GEV, D means the meanlog of LN, E means the sdlog of LN, and F mean the parameters (i.e. theta) in copula

Parameter Zhangjiashan Xianyang

SS DF MS F-Value P-value SS DF MS F-Value P-value
A 0.97 2 0.48 33813.15 <0.0001 [2.08 2 1.04 27047.85 <0.0001
B 0.096 2 0.048 3349.45 <0.0001 |0.15 2 0.076 1983.83 <0.0001
C 4.627E-004 2 2.313E-004 16.19 <0.0001 [1.055E-003 2 5.274E-004 13.72 <0.0001
D 0.11 2 0.057 3987.58 <0.0001 |0.17 2 0.084 2181.53 <0.0001
E 0.28 2 0.14 9809.61 <0.0001 |0.47 2 0.24 6153.63 <0.0001
F 0.013 2 6.451E-003 451.42 <0.0001 |0.025 2 0.013 331.58 <0.0001
AB 0.087 4 0.022 1525.14 <0.0001 |0.16 4 0.041 1066.18 <0.0001
AC 4.090E-004 4 1.022E-004  7.15 <0.0001 |1.101E-003 4 2.754E-004 7.16 <0.0001
AD 0.022 4 5.448E-003  381.22 <0.0001 {0.044 4 0.011 286.00 <0.0001
AE 0.066 4 0.017 1156.06 <0.0001 0.15 4 0.038 995.79 <0.0001
AF 2.163E-003 4 5.407E-004 37.84 <0.0001 |5.986E-003 4 1.496E-003 38.93 <0.0001
BC 4.233E-005 4 1.058E-005 0.74 0.5645 7.800E-005 4 1.950E-005 0.51 0.7304
BD 1.147E-003 4 2.866E-004  20.06 <0.0001 |1.377E-003 4 3.444E-004 8.96 <0.0001
BE 3.254E-003 4 8.135E-004 56.93 <0.0001 |4.755E-003 4 1.189E-003 30.93 <0.0001
BF 2.479E-004 4 6.198E-005 4.34 0.0018 4.939E-004 4 1.235E-004 3.21 0.0126
CD 5.408E-006 4 1.352E-006  0.095 0.9842 9.226E-006 4 2.307E-006 0.060 0.9933
CE 1.513E-005 4 3.782E-006 0.26 0.9007 3.112E-005 4 7.781E-006 0.20 0.9370
CF 1.190E-006 4 2.974E-007  0.021 0.9992 3.369E-006 4 8.423E-007 0.022 0.9991
DE 0.054 4 0.014 950.06 <0.0001 |0.096 4 0.024 623.48 <0.0001
DF 1.870E-004 4 4.676E-005 3.27 0.0114 3.437E-004 4 8.592E-005 2.24 0.0638
EF 4.113E-004 4 1.028E-004  7.20 <0.0001 |9.130E-004 4 2.282E-004 5.94 0.0001
Error 9.374E-003 656 1.429E-005 0.025 656 3.844E-005
Total SS 1.72 728 3.40 728
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Table 7. Contributions of parameter uncertainties obtained by three level ANOVA to
predictive failure probabilities for a design return period of 200-year and service time

of 30-year

Factor FPand FPor FPkendall
A 43.53% 56.67% 56.40%

B 2.12% 5.56% 5.58%

C 0.01% 0.03% 0.03%

D 6.94% 6.67% 6.40%

E 21.18% 16.67% 16.28%

F 0.11% 0.02% 0.76%
Interaction  26.12% 4.72% 5.06%
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Flood variable 1 Flood variable 2

Marginal distribution Marginal distribution
F1=F(x, 61) F2=F(y, 62)

| |
v

Joint distribution estimation
Fxv(X, y) = C(F(x, 641), (. 62), 6c)

v

Parameter uncertainty quantification through Bootstrap
(61,62, 60)* ~ [(X1,Y1)}, (X2,Y2)%, ..., (Xn, Yn)]
(61,62, 6c)% ~ [(X1,Y1)% (X2,Y2)2 ..., (Xn,Yn)?]

(61,62, 6c)® ~ [(X1,Y1)B, (X2,Y2)8, ..., (Xn,Yn)F]

) 4 v
Multi-level factorial Full-subsampling
analysis ANOVA
Main and interactive Uncertainty sources

effects of parameters identification

<5

Contributions of parameter
uncertainties to risk inferences

Figure 1. Framework of the proposed FSFC approach.
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Figure 2. The location of the studied watersheds. Wei River is the largest tributary of Yellow river,
with a drainage area of 135,000 km?. The historical flood data from Xianyang and Zhangjiashan
stations on the Wei River are analyzed through the proposed FSFC approach.
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Figure 3. Probabilistic features for parameters in marginal distributions and copula: for both
Xianyang and Zhangjiashan stations, the GEV (parameters include shape, scale and location)
function would be employed to quantify the distribution of flood peak, while the lognormal
distribution (parameters denoted as meanlog and sdlog) is applied for flood volume. The Gumbel
and Joe copula (parameter denoted as theta) would be respectively adopted to model the
dependence between flood peak and volume at Zhangjiashan and Xianyang stations.
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Figure 4. Uncertainty quantification of the joint RP in “AND”: the red dash lines indicate the predictive means, the two blue dash lines respectively indicate the 5%
and 95% quantiles, and the grey lines indicate the predictions under different parameter samples with the same joint RP of the red and blue dash lines; The cyan lines
denote the predictions under different return periods with the model parameters being their mean values.
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Figure 5. Uncertainty quantification of the joint RP in “OR”: the red dash lines indicate the predictive means, the two blue dash lines respectively indicate the 5% and
95% quantiles, and the grey lines indicate the predictions under different parameter samples with the same joint RP of the red and blue dash lines; The cyan lines
denote the predictions under different return periods with the model parameters being their mean values.
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Figure 6. Uncertainty quantification of the joint RP in “Kendall”: the red dash lines indicate the predictive means, the two blue dash lines respectively indicate the 5%
and 95% quantiles, and the grey lines indicate the predictions under different parameter samples with the same joint RP of the red and blue dash lines; The cyan lines
denote the predictions under different return periods with the model parameters being their mean values.
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Figure 7. Main effects plot and full interactions plot matrix for parameters on the failure probability in AND at the two gauge stations.

50



https://doi.org/10.5194/hess-2019-434
Preprint. Discussion started: 11 October 2019
(© Author(s) 2019. CC BY 4.0 License.

(a) Zhangjiashan

(b) Xianyang

Mean Failure Probability

Mean Failure Probability

Main Effect

GEV_scale

Hydrology and ¢
Earth System >
Sciences ¢
Discussions :

020

015

010

020

015

010

Main Effect
GEV_scaie
025
020
015 /
010
T
o1 05 09
N sdog
025
020
015 /
o //

03

—%
- e -
.-
_ _ — —
e R e % ==
024
o ot s —=i=a 4= = [S====
o
" I — n—/ ——s
021 .
g S a *
o = e = ) N e ===
7 ——t “ s
- - -- » -- +
[ el e =E ) s ) e =
024
01 —r" | e | ./l/' o pdn
—T— —
) )
Timerctve £fiect
o o5 e o5 o o1 o5 o
—+
PUPte *-4- | o+ | o--C| t-09—9
—3—3 | —8—3 = —s—3
—
024 .
Gev_sae == = Eg;‘ Z [ =
014
" GEV_kcaton f—a— ',/. P
024 -2
i} : —m
= = - e =
o] t—/:‘/’ [ T e A ===
- - -~ >
: . -
;‘:’J ::.;l et pleds .:I:;
. "
ord e e e oo neta
i

Figure 8. Main effects plot and full interactions plot matrix for parameters on the failure probability in OR at the two gauge stations
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Figure 9. Main effects plot and full interactions plot matrix for parameters on the failure probability in Kendall at the two gauge stations
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Figure 10. Contributions of parameter uncertainties to predictive failure probabilities in AND
under different design standards (i.e. return periods (RP)) and different service periods
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Figure 11. Contributions of parameter uncertamtles to predictive failure probabilities in OR under
different design standards (i.e. return periods (RP)) and different service periods
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Figure 12. Contributions of parameter uncertainties to predictive failure probabilities in Kendall
under different design standards (i.e. return periods (RP)) and different service periods
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Figure 13. Comparison of parameter contributions to predictive uncertainty for failure
probabilities under different levels of subsampling for Zhangjiashan station: three (i.e. 0.1, 0.5,
0.9) and four (i.e. 0.1, 0.35, 0.6, 0.85) level quantiles are adopted for subsampling and the design
return period is 200 years.
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Figure 14. Variation of parameters’ contributions for different risk inferences at the Zhangjiashan

Station for a design standard of 200-year and a service time of 30-year
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Figure 15. Correlation for parameters’ contributions on risk inferences at Zhangjiashan station for a design standard of 200-year and a service time of 30-year: The

cross sign indicates the correlation is statistically insignificant.
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